ploiger JTool

Introduction

* Provides command-line tools for automating tasks using scripts

» Provide dll underlying API, written in C language, which can be called by various
application layer languages (C# Python Matlab Qt, etc.)

* You can use the ID number to distinguish between multiple identical devices

+ The fastest implementation of upper-level development, only a few api functions to
achieve the required functions

Simple example

JTool CMD and DLL are command line script tools and secondary development libraries
for USB to 12C, USB to IO and other tools.

» CMD tools are usually useful in production test environments, such as implementing
automated actions or detection in bat batch scripts or Powershell scripts.

» DLL is used to provide API called by application layer to facilitate secondary
development (C#, Python, QT, Matlab, etc.)

CMD application example in Powershell
Get the ADC sample value of 103 and judge whether it is within the range.

jtool adcon 3 @ # Channel 3 as ADC sampling, do not use differential
$output = & "jtool" adcget 3 # Get the sample value of Channel 3
=0
Try to convert the output to an integer
if ([int]::TryParse($output, [ref])) {

= [Math]::Round(* 3.3 / 4096,2)

"Conversion succeeded, output number: $number"

= [Math]::Abs(-3.3)

"Comparison deviation value: $number"

if($number -gt 0.3){ # judgment deviation

Write-Error "Compare failed, out of range"

}
} else {

$output

Write-Error "Conversion failed, the output is not a valid number"

1/81

‘o] JTool

Application example of DLL in C# Program
Read 12C data

// Import DLLAPI

[D11Import("jtool.d1ll", CallingConvention = CallingConvention.Cdecl)]

public static extern IntPtr DevOpen(DevType DevType, string Sn, int Id);
[D11Import("jtool.d1ll", CallingConvention = CallingConvention.Cdecl)]

public static extern bool DevClose(IntPtr DevHandle);

[D1lImport("jtool.dll"™, CallingConvention = CallingConvention.Cdecl)]

public static extern int I2CRead(IntPtr DevHandle, byte slave_addr, int reg_type,
UInt32 reg_addr, UIntl6 len, byte[] buf);

private void Read()

{
// Open the device without specifying SN and ID, as long as there is an I2C

device
IntPtr p = DevOpen(DevType.dev_i2c, null, -1);
if (p == IntPtr.Zero)

{

Console.WriteLine("Failed to Open Device");

return;

int readlen = 16;
byte[] buffread = new byte[readlen];
I2CRead(p, ©xa@, 1, Ox 00, readlen, buffer);//Read slave address A®@, register

address 00, read 16 bytes to buffer
Console.WriteLine(BitConverter.ToString (buffer).Replace("-", ""));// Print

the read data
DevClose(p);// Shut down the device

Before using cmd or dll, it is recommended to use the upper computer provided by us

to ensure normal use.

CMD command set

The command line is called in the system CMD program. If you double-click to open

jtool.exe directly, it will not run

2/81

‘o] JTool

Please call in CMD, as shown in the figure, start CMD in the jtool Directory

| ' = | jtool

#Ejtool SR+ Acmd EEE
El = = ==

1T | cmd| V|-) it jtool REE »

S tREEAE
4 jtool.dl

@ OneDrive - Personal B jtool.exe

ER €| jtoolh
i

= prafe
k]
B s
= Bk
Bl
¥ T=
d Ex

After opening the command line window, call jtool with the command and parameters.

BN C\Windows\System32\cmd.exe
£t [k

The meaning and parameters of each command will be explained in detail below.

jtool [command] [-Option 1] [-Option 2] [-Option n] [parameter 1] [parameter 2] [
parameter n]

help

View all command collections

jtool --help

View the meaning and parameters of a single command

jtool [command] -- help

3/81

‘o] JTool

scan

View all inserted jtool devices.
jtool scan

delay

Delay time (ms)

jtool delay 1000

| [@ JEEREEEEE
ioh

Set the 10 port to high level.

Options/ o
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
paramQ The pin number that needs to be set high

Set I01 high
jtool ioh 1

Set the device IO01 with ID @ High
jtool ioh -i @ 1

Set all IOl ~ IO4 high
jtool ioh -m oxef

4 /81

ploiger JTool

iol

Set the 10 port low

Options/ o
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
paramQ The pin number that needs to be set low

Set IOl low
jtool iol 1

Set the device IO1 with ID © to low
jtool iol -i @0 1

Set all 101 ~ IO4 low
jtool iol -m exef

IOW

Write 10 port to fixed level

Options/ Lo
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
paramO The PIN number of the write level required
param1 The value of the level to be written

5/81

‘o] JTool

Write I0O1 low
jtool iow 1 ©

Write the device I01 with ID @ High
jtool iow -i @11

Write IO1 and IO2 to high level, and IO3 and I04 to low level
jtool iow -m ©x0f ©x03

1or

Read 10 port level

Options/ o
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
param0 The pin number that requires the read level

Read the level of I01

jtool ior 1

Read the level of device IO1 with ID ©
jtool ior -i 01

Read the levels of IO1 and IO3 at the same time
jtool ior -m ©x05

pulseon

Output pulse normally on

Options/ o
Description
Parameters

-i Use the device with the specified id

6/81

‘o] JTool

Options/ o
Description
Parameters

Whether to execute in bitwise mask mode, used to execute multiple
-m

pins at the same time
paramO The pin number that requires a pulse output

Frequency of pulse output (refer to JIO upper computer for optional
param1

values)

I01 output pulse normally open 400kHz
jtool pulseon 1 400000

The IO1 output pulse of the device with ID @ is normally on 400kHz
jtool pulseon -i © 1 400000

#4 channel simultaneous output pulse normally open 400kHz
jtool pulseon -m @xof 400000

pulseoff

Turn off output pulse

Options/ L
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
param0 The pin number that requires the turn-off pulse

7181

‘o] JTool

I01 off pulse
jtool pulseoff 1

Device I01 shutdown pulse with ID ©
jtool pulseoff -i @ 1

#4 Channel Simultaneous Off Pulse
jtool pulseoff -m oxef

pulsecnt

Output fixed pulse number

Options/ o
Description
Parameters

-i Use the device with the specified id

Whether to execute in bitwise mask mode, used to execute multiple
-m

pins at the same time
paramO The pin number that requires the pulse output
param1 Number of pulse outputs

Frequency of pulse output (refer to JIO upper computer for optional
param2

values)

I01 output 1000 pulses 100kHz
jtool pulsecnt 1 1000 100000

Device I01 with ID © outputs 1000 pulses 100kHz
jtool pulsecnt -i © 1 1000 100000

#4 channel output 1000 pulses at the same time 100kHz
jtool pulsecnt -m Ox0f 1000 100000

pwmon

Turn on PWM output

8/81

ploiger JTool

Options/ o
Description
Parameters

-i Use the device with the specified id

Whether to execute in bitwise mask mode, used to execute multiple
-m

pins at the same time
paramO The pin number that requires a pulse output

Duty cycle of the PWM output (0 to 1000 corresponds to a duty
param1

cycle of 0% to 100)

I01 output PWM with 50% duty cycle
jtool pwmon 1 500

Device IOl with ID © outputs PWM with 50% duty cycle
jtool pwmon -i © 1 500

#4 channel simultaneous output PWM with 50% duty cycle
jtool pwmon -m ©x0f 500

pwmoff

Turn off PWM output

Options/ o
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
param0 The pin number that needs to close the PWM

9/81

‘o] JTool

I01 Close PWM
jtool pwmoff 1

Disable PWM for device IO1 with ID ©
jtool pwmoff -i © 1

#4 channel at the same time off PWM
jtool pwmoff -m oxef

pwmfreq

Set PWM frequency (applies to all PWM channels)

Options/ o
Description
Parameters
-i Use the device with the specified id
PWM output frequency (refer to JIO host computer for optional
paramO

values)

Set PWM frequency to 1kHz
jtool pwmfreq 1000

Set PWM frequency to 1kHz for devices with ID ©
jtool pwmfreq -i © 1000

capclear

Clear PWM captured pulse count (Channel 1 only)

Options/ L.
Description
Parameters
-i Use the device with the specified id
The pin number that needs to clear the count (this parameter can only
paramO

be 1, only channel 1 supports PWM capture)

10/ 81

‘o] JTool

Clear the capture Pulse count of IO1

jtool capclear 1

The device with ID © clears the capture Pulse count of IO1
jtool capclear -i 01

capon

Enable PWM capture (Channel 1 only)

Options/ L
Description
Parameters
-i Use the device with the specified id
The pin number that needs to enable PWM capture (this parameter
paramO

can only be 1, only channel 1 supports PWM capture)

Turn on the capture function of IO1

jtool capon 1
The device with ID © clears the capture Pulse count of IO1

jtool capon -i 0 1

capget

Get PWM capture data (only channel 1 is supported)

Options/ Lo
Description
Parameters
-i Use the device with the specified id
The PIN number of the capture value to be obtained (this parameter
paramO

can only be 1, only channel 1 supports PWM capture)

111781

‘o]
Get the captured data of IO1

jtool capget 1

The device with ID © obtains the captured data of IO1
jtool capget -i 0 1

adcsamp

Set the ADC sampling rate (applies to all ADC channels)

Options/ .
Description
Parameters
-i Use the device with the specified id
Configure the sampling rate of ADC (refer to JIO host computer
paramO

for optional values)

Set the ADC frequency to 50Hz
jtool adcsamp 50

Set the ADC frequency to 50Hz for devices with ID ©
jtool adcsamp -i © 50

adcon

Turn on ADC sampling

Options/ Lo
Description

Parameters
-i Use the device with the specified id

Whether to execute in bitwise mask mode, used to execute multiple
-m

pins at the same time
paramO Pin number that requires ADC sampling to be enabled

Whether it is Differential sampling (0 single-ended 1 differential) (set
param

to differential will occupy the next pin)

12/81

JTool

‘o] JTool

Enable ADC sampling of I01
jtool adcon 1 ©

Enable ADC sampling of IO1 (differential IO1 + IO-)
jtool adcon 1 1

Enable ADC sampling of IOl for devices with ID ©
jtool adcon -1 0 1 0

#4 channel at the same time open ADC sampling (two differential)
jtool adcon -m Ox05 ©x05

adcget

Get ADC sample values

Options/ o
Description
Parameters
-i Use the device with the specified id
Whether to execute in bitwise mask mode, used to execute multiple
-m
pins at the same time
paramO The pin number needed to get the ADC sample value

Obtain the ADC sampling value of I01
jtool adcget 1

The device with ID © obtains the ADC sample value of I01
jtool adcget -i 0 1

Get the ADC sample values of IOl and IO03
jtool adcget -m 0x@5

jiovec

Set the VCC output voltage of the JIO device

131781

ploiger JTool

Options/

Description
Parameters
-i Use the device with the specified id
VCC option enumeration value, different models may support different,
param0 see The JIO interface drop-down box (for example: 0 - 5V; 1 - 3.3V,

2-closed)

VCC voltage set to 5V

jtool jiovcc ©

VCC voltage set to 3.3V

jtool jiovcc 1
VCC voltage set to off
jtool jiovcc 2

jiovio

Set the VIO level voltage of the JIO device

Options/ o
Description
Parameters
-i Use the device with the specified id
VIO option enumeration value. Different models may support different
param0 values. For details, please refer to the drop-down box of the JIO

interface (for example: 0 - 3.3V; 1 - 1.8V)

VIO voltage set to 3.3V

jtool jiovio ©
jioid

Set the ID of the JIO device.
This option is set to take effect after a reboot

14/ 81

‘o]
Options/Parameters

paramO

Set the device id value to 1

jtool jioid 1

Description

Use the device with the specified id

The id to be modified.

Set the id value of the device with the original id of © to 1

jtool jioid -i @ 1

jioreboot

Restart the JIO device

Options/Parameters

jtool jioreboot

jioinboot
JIO device into bootloader

Options/Parameters

jtool jioinboot

S | | Yo S—

i2cscan

Scan the 12C slave address

Description

Use the device with the specified id

Description

Use the device with the specified id

15/81

JTool

ploiger

Options/ o
Description
Parameters

-i Use the device with the specified id

slave7 uses 7-bit address mode (does not include read and
write bits)

Scan the I2C slave address
jtool i2cscan

Use the device with id © to scan the I2C slave address

jtool i2cscan -i @

Scan the I2C slave address and display it as a 7-bit address

jtool i2cscan -s

i2cwrite
12C write data
Options/ o
Description
Parameters
-i Use the device with the specified id
-S slave7 uses 7-bit address mode (does not include read and write bits)
param0 Slave address
1 Register address (determine the type of register according to the
aram
P length, please fill in none without Register)
param2 Data to be written (array)

16/ 81

JTool

‘o] JTool

Slave address a@ register address 00 write 11 22 33 44 55
jtool i2cwrite A@ 00 11 22 33 44 55

Slave address a@ register address 0000 (representing register address is 2
bytes) write 11 22 33 44 55
jtool i2cwrite A@ 0000 11 22 33 44 55

Slave address a@ register address 000000 (representing register address is 3

bytes) write 11 22 33 44 55
jtool i2cwrite A©@ 000000 11 22 33 44 55

i2cread

I12C read data

Options/ o
Description
Parameters
-i Use the device with the specified id
-S slave7 uses 7-bit address mode (does not include read and write bits)
-d d1 read delay Sr plus delay (0 ~100ms)
-D d2 read delay plus delay after reading address (0 ~100ms)
param0 Slave address
1 Register address (determine the type of register according to the

aram
P length, please fill in none without Register)
param2 Length to read (decimal)

177181

‘o] JTool

Slave address a@ register address 00 reads 5 bytes
jtool i2cread AO 00 5

Slave address a@ register address 0000 (representing register address is 2
bytes) reads 5 bytes
jtool i2cread A© 0000 5

Slave address a@ register address 000000 (representing register address is 3
bytes) reads 5 bytes
jtool i2cread A© 000000 5

eewrite

EEPROM write data

The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.

Need to make sure baseslave is correct

Need to make sure regaddr is the correct length

Need to make sure pagesize is correct (needed for cross-page writing)

Options/ oo
Description

Parameters
-i Use the device with the specified id
-S slave7 uses 7-bit address mode (does not include read and write bits)
-B blockhigh Block in high (for 24AA(LC/FC)1025)

(Required) page size of EEPROM for cross-page write processing
P (decimal, in Byte)
param0 Slave address

register address (determine the type of register according to the
param1

length, eeprom some are 1 byte, some are 2 bytes)
param?2 Data to be written (array)

181781

‘o] JTool

Example 24CO1 Register Address 00 Write 11 22 33 44 55
jtool eewrite -p 8 A@ 00 11 22 33 44 55

Example 24C32 register address 0000 (2 bytes for this model) write 11 22 33 44
55

jtool eewrite -p 32 A© 0000 11 22 33 44 55

eeread

EEPROM read data

The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.

Need to make sure baseslave is correct

Need to make sure regaddr is the correct length

Options/ L.
Description

Parameters
-i Use the device with the specified id
-S slave7 uses 7-bit address mode (does not include read and write bits)
-B blockhigh Block in high (for 24AA(LC/FC)1025)
param0 Slave address

register address (determine the type of register according to the
param

length, eeprom some are 1 byte, some are 2 bytes)
param2 Length to read (decimal)

Example 24C01 register address 00 reads 5 bytes
jtool eeread A@ 00 5

Example 24C32 register address 0000 (2 bytes for this model) reads 5 bytes
jtool eeread AO 0000 5

eewritef

EEPROM write file

19/81

‘o] JTool

The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.

Need to make sure baseslave is correct

Need to make sure regaddr is the correct length

Need to make sure pagesize is correct (needed for cross-page writing)

Options/ L.
Description
Parameters
-i Use the device with the specified id
-S slave7 uses 7-bit address mode (does not include read and write bits)
-B blockhigh Block in high (for 24AA(LC/FC)1025)
(Required) page size of EEPROM for cross-page write processing
P (decimal, in Byte)
param0 Slave address
register address (determine the type of register according to the
param1
length, eeprom some are 1 byte, some are 2 bytes)
param2 The file path needs to be written.

Example 24C01 Register Address 00 Write data.bin
jtool eewritef -p 8 A@ 00 .\data.bin

Example 24C32 register address 0000 (2 bytes for this model) writes data.bin
jtool eewritef -p 32 A@ 0000 .\data.bin

eereadf

EEPROM read data to file

EEPROM read data

The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.

Need to make sure baseslave is correct

Need to make sure regaddr is the correct length

20/ 81

‘o]

Options/
Parameters

paramO
param1

param?2

param3

Description

Use the device with the specified id

slave7 uses 7-bit address mode (does not include read and write bits)
blockhigh Block in high (for 24AA(LC/FC)1025)

Slave address

register address (determine the type of register according to the
length, eeprom some are 1 byte, some are 2 bytes)

Length to read (decimal)

The path to the folder to be saved (note that the folder is not a file)

Example 24C01 register address 00 reads 5 bytes to the current directory
jtool eereadf AG 00 5 .\

Example 24C32 register address 0000 (2 bytes for this model) reads 5 bytes into

the current directory
jtool eereadf A© 0000 5 .\

i2cint

Detect interrupt pin for Interrupt

Options/
Parameters

Description

Use the device with the specified id
wait Whether to wait for an interrupt to exit the process

Interrupt type (0: None 1: rising edge 2: Falling Edge 3: High Level
4: Low Level 5: Double Edge)

JTool

21/81

‘o]

JTool

Detect rising edge interrupt

jtool i2cint 1

Exit after waiting for rising edge interrupt

jtool i2cint -w 1

ji2cvee

Set the VCC output voltage of the JI2C device

Options/

Parameters

paramO

VCC
jtool

VCC
jtool

VCC
jtool

voltage

ji2cvcc

voltage

ji2cvcc

Description

Use the device with the specified id

VCC option enumeration value, different models may support different,
see the JI12C interface drop-down box (for example: 0 - 5V; 1 - "= VIO"
; 2-closed)

set to 5V

set to "= VIO"

voltage set to off

ji2cvcc

ji2cvio

2

Set the VIO level voltage of the JI2C device

Options/

Parameters

paramO

Description

Use the device with the specified id

VIO option enumeration value, different models may support different,
see the JI12C interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

22 /81

‘o] JTool

VIO voltage set to 3.3V
jtool ji2cvio ©

ji2cspd

Set the clock rate of the JI2C device

Options/ L
Description
Parameters
-i Use the device with the specified id
I2C rate option enumeration value, different models may support
param0 different, refer to the JI12C interface drop-down box (for example: O -

10K; 1 - 50K)

I2C rate set to 100K
jtool ji2cspd 2
ji2cid

Set the ID of the JI2C device.
This option is set to take effect after a reboot

Options/Parameters Description
-i Use the device with the specified id

param0 The id to be modified.

Set the device id value to 1
jtool ji2cid 1

Set the id value of the device with the original id of @ to 1
jtool ji2cid -i @ 1

ji2creboot

Restart the JI2C device

23 /81

‘o] JTool

Options/Parameters Description

-i Use the device with the specified id

jtool ji2creboot

ji2cinboot
JI12C device into bootloader
Options/Parameters Description

-i Use the device with the specified id

jtool ji2cinboot

spiwrite

SPI write-only data

Options/ Lo
Description

Parameters
-i Use the device with the specified id

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
-m

1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG
-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB
param0 Data to be written (array)

spi Write to array (default clock and bit order)
jtool spiwrite 00 01 02 03 04 05

spi write array (clock HIGH_1EDG bit order LSB)
jtool spiwrite -m 2 -e 1 00 01 02 03 04 05

24/ 81

ploiger JTool

spiread

SPI read data only

Options/

Description

Parameters
-i Use the device with the specified id

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
-m

1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG
-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB
paramO Length to read

spi read 5 bytes (default clock and bit order)
jtool spiread 5

spi read 5 bytes (clock HIGH_1EDG bit order LSB)
jtool spiread -m 2 -e 1 5
spiwr

SPI write while reading

Options/ o
Description

Parameters
-i Use the device with the specified id

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
-m

1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG
-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB
paramO Data to be written (array)

25/ 81

‘o] JTool

spi Write to array (default clock and bit order)
jtool spiwr 00 01 02 03 04 05

spi write array (clock HIGH_1EDG bit order LSB)
jtool spiwr -m 2 -e 1 00 01 02 03 04 05

gspiwrite

QSPI write-only data

Options/ L
Description

Parameters
-i Use the device with the specified id

mode Specifies the QSPI clock mode (default is 0): 0-LOW_1EDG;
-m

1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG
-e endian specifies QSPI first order (default is 0): 0-MSB; 1-LSB
paramO Data to be written (array)

spi Write to array (default clock and bit order)
jtool gspiwrite 00 01 02 03 04 05

spi write array (clock HIGH _1EDG bit order LSB)
jtool gspiwrite -m 2 -e 1 00 01 02 03 04 05

qgspiread

QSPI read data only

Options/ o
Description

Parameters
-i Use the device with the specified id

mode Specifies the QSPI clock mode (default is 0): 0-LOW_1EDG;
-m

1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG
-e endian specifies QSPI first order (default is 0): 0-MSB; 1-LSB

26/ 81

ploiger

Options/ o
Description
Parameters

paramQ Length to read

spi read 5 bytes (default clock and bit order)
jtool gspiread 5

spi read 5 bytes (clock HIGH_1EDG bit order LSB)
jtool gspiread -m 2 -e 1 5
spiwcmd

SPI writes data with instructions (CMD, ADDR, ALT, DUMMY)

Options/ oo
Description
Parameters
-i Use the device with the specified id
mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
-m
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG
-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB
gspi Specifies the SPI/QSPI combination type (default is 0): 0-all one-
a line; 1-all four-line; 2-data four-line only; 3-instruction one-line only
cmd instruction (hexadecimal) For example: 00 represents a 1-byte
-C
instruction; 0000 represents a 2-byte instruction; Maximum 4 bytes
addr address (hexadecimal) For example: 00 represents a 1-byte
-a
address; 0000 represents a 2-byte address; Maximum 4 bytes
‘ alt (hexadecimal) For example: 00 represents 1 byte alt; 0000
represents 2 bytes alt; Maximum 4 bytes
dummy dummy empty period length (decimal) for example: 1
-d represents 1 byte dummy; 2 represents 2 bytes dummy; Maximum 4
bytes
paramO Data to be written (array)

27181

JTool

ploiger

spi write array {@x 55,0x 55,0x 55} cmd instruction is ©xe01
jtool spiwcmd -c @1 55 55 55

spi write array {@x 55,0x 55,0x 55} cmd instruction is ©x 01 instruction phase

single line, data phase four line QSPI
jtool spiwcmd -q 2 -c @1 55 55 55

spircmd

SPI read data with instructions (CMD, ADDR, ALT, DUMMY)

Options/
Parameters

paramO

Description

Use the device with the specified id

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

endian specifies SPI first order (default is 0): 0-MSB; 1-LSB

gspi Specifies the SPI/QSPI combination type (default is 0): 0-all one-
line; 1-all four-line; 2-data four-line only; 3-instruction one-line only

cmd instruction (hexadecimal) For example: 00 represents a 1-byte
instruction; 0000 represents a 2-byte instruction; Maximum 4 bytes

addr address (hexadecimal) For example: 00 represents a 1-byte
address; 0000 represents a 2-byte address; Maximum 4 bytes

alt (hexadecimal) For example: 00 represents 1 byte alt; 0000
represents 2 bytes alt; Maximum 4 bytes

dummy dummy empty period length (decimal) for example: 1
represents 1 byte dummy; 2 represents 2 bytes dummy; Maximum 4
bytes

Length to read

28/ 81

JTool

‘o] JTool

spi read 3 bytes cmd instruction is ©ox@01

jtool spircmd -c 01 3
spi reading 3 bytes cmd instruction is ©x 01 instruction phase single line, data

phase four line QSPI
jtool spircmd -q 2 -c 01 3

spiint

Detect interrupt pin for Interrupt

Options/ o
Description
Parameters
-i Use the device with the specified id
-W wait Whether to wait for an interrupt to exit the process
Interrupt type (0: None 1: rising edge 2: Falling Edge 3: High Level
paramO

4: Low Level 5: Double Edge)

Detect rising edge interrupt

jtool spiint 1
Exit after waiting for rising edge interrupt
jtool spiint -w 1

jspivcc

Set the VCC output voltage of the JSPI device

Options/ Lo
Description
Parameters
-i Use the device with the specified id
VCC option enumeration value, different models may support different,
param0 see JSPI interface drop-down box (for example: 0 - 5V; 1 - "= VIO" ;

2-closed)

29/ 81

‘o]
VCC

jtool

VCC
jtool

VCC
jtool

voltage set to 5V

jspivcc ©

voltage set to "= VIO"

jspivcc 1

voltage set to off

jspivcc 2

jspivio

Set VIO-level voltage for JSPI devices

Options/

Parameters

paramO

Use the device with the specified id

Description

JTool

VIO option enumeration value, different models may support different,

VIO voltage set to 3.3V

jtool jspivio @

jspispd

Set the clock rate of the JSPI device

Options/

Parameters

paramO

Use the device with the specified id

SPI rate option enumeration value, different models may support

SPI rate set to 937.5k

jtool jspispd 21

see JSPI interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

Description

different, specific reference JSPI interface drop-down box (for
example: 0 - 468.75K; 1 - 937.5K)

30/ 81

‘o] JTool

jspiid
Set the JSPI device ID.
This option is set to take effect after a reboot

Options/Parameters Description
-i Use the device with the specified id

param0 The id to be modified.

Set the device id value to 1
jtool jspiid 1

Set the id value of the device with the original id of © to 1
jtool jspiid -i @ 1

jspireboot

Restart the JSPI device

Options/Parameters Description

-i Use the device with the specified id

jtool jspireboot

jspiinboot
JSPI device into bootloader

Options/Parameters Description

-i Use the device with the specified id

jtool jspiinboot

31/81

ploiger

DLL API

jtool.dll is the lowest level dynamic link library written by C language to be compatible with

all other application layer language calls

jtool.dll provides the most simple and easy-to-use API, which can realize the required

functions most quickly.

Just import the jtool.dll file into your own project, where the jtool. H file contains all API

interface and enumeration declarations

| = | jtool
m mE ==

o » Jtool v D T jtool HEE

=R EMEEE
a BREE

@ OneDrive - Personal B jtool.exe 2024/8/5 21:47
BR c| jtoolh
S

2024/8/5 15:48

O RE
Pouous
B msm
= B8R
& sz
¥ TE
=1

jtool.dll 2024/8/5 21:47

i Fl

RiFERT R 158 KB
RIFEERE 186 KB
C Header iE30i% 7TKB

Enumeration type

32/ 81

JTool

‘o] JTool

typedef enum

{
dev_all = -1,

dev_i2c

1}
()
-

dev_io,

dev_spi,
dev_can,
dev_max,

} dev_type_enum;

typedef enum

{
ErrNone = @,// success
ErrParam = 1 << 0,// Parameter error
ErrDisconnect = 1 << 1,// USB disconnect
ErrBusy = 1 << 2,// USB send busy
ErrWaiting = 1 << 3,// waiting for reply
ErrTimeOut = 1 << 4,// communication timeout

ErrDataParse

1 << 5,// Communication data error
ErrFailACK = 1 << 6,// return failed parameter
} ErrorType;

typedef enum

{
REGADDR_NONE
REGADDR_8Bit
REGADDR_16Bit
REGADDR_24Bit
REGADDR_32Bit

} REGADDR_TYPE;

0,// address is not sent

1,// send 8-bit address
2,// send 16-bit address
3,// send 24-bit address
4,// send 32-bit address

typedef enum
{
SINGLEALL = 0,// all stages are single line
QUADALL = 1,// all stages are four-wire
QUADDATA = 2,// only four lines in the data phase, other single lines
SINGLECMD = 3,// instruction phase single line only, other four lines
} QSPI_TYPE;

typedef enum

{
LOW_1EDG = O,

33 /81

‘o] JTool

LOW_2EDG = 1,

HIGH_1EDG =

HIGH_2EDG =
} SPICK_TYPE;

2,
3

)

typedef enum
{
ENDIAN_MSB = @,// high before
ENDIAN_LSB 1,// Low before
} SPIFIRSTBIT_TYPE;

typedef enum

{
FIELD_NONE = ©,// none
FIELD_ONE,// 1 byte
FIELD_TWO,// 2 bytes
FIELD_THREE,// 3 bytes
FIELD_FOUR,// 4 bytes

} FIELDLEN_TYPE;

typedef enum

{
INT_NONE = ©,// none
INT_RISE = 1,// rising edge
INT_FALL = 2,// falling edge
INT_HIGH = 3,// high
INT_LOW = 4,// Low Level
INT_RISE_FALL = 5,// bilateral edge
} INT_TYPE;

//(3I2C, JSPI)INT pin interrupt callback function type
typedef void (*I2CIntCallbackFun)(void);
typedef void (*SPIIntCallbackFun)(void);

Interface Overview
Public API interface

Before operating the device, you need to use DevOpen to open the device
After the device is opened, the device will be occupied. Other processes cannot open the
occupied device again until the device is closed by DevClose or the process occupying the

device exits.

34 /81

ploiger

DevicesScan scans inserted devices, returned as a string

Interface Name

DevicesScan
DevOpen

DevClose

JTool-l0 APl interface

Overview
View currently connected devices
Turn on the device

Shut down the device

Most functions of the JTool-IO module provide additional_M ending API, which means that

it is executed in a bitwise mask mode to facilitate simultaneous execution of multiple pins.

For example:

If the lower 4 bits of Ox0f are 1, 101 ~ 104 are set at the same time
0x 03 The lower 2 bits are 1, both IO1 and |02 are set
If some functions are applied to all channels, the API at the end of _M is not provided.

Interface Name
|OSetNone
|OSetNone_m
|OSetin
IOSetln_m
|0OSetOut
|OSetOut_m

|OSetVal

|OSetVal_m

|OSetOutWithVal

10SetOutWithVal_m

IOPulseOn

Overview
Set to empty mode
Set to empty mode (mask multi-channel execution)
Set to 10 input
Set to 10 input (mask multi-channel execution)
Set to 10 output
Set to 10 output (mask multi-channel execution)
Set the level of the output

Setting the level of the output (mask multi-channel
implementation)

Set to 10 output while setting the output level

Set to 10 output while setting the output level (mask multi-
channel execution)

Pulse output normally open

35/ 81

JTool

ploiger

IOPulseOn_m

|OPulseOff
IOPulseOff m

IOPulseCnt
IOPulseCnt_m
IOPulseFreq
IOPulseFreq_m

PWMSetFreq
PWMSetOut
PWMSetOut_ m
PWMSetOn
PWMSetOn_m
PWMSetOff
PWMSetOff m
PWMSetDuty
PWMSetDuty_m
CapSetin
CapClearCnt
ADCSetln
ADCSetln_m
ADCSetSamp

|[OGetInVal

JTool

Overview

Pulse output normally open (mask multi-channel
implementation)

Pulse output stop
Pulse output stop (mask multi-channel execution)
Output fixed pulse number

Output fixed number of pulses (mask multi-channel
execution)

Set pulse output frequency

Set pulse output frequency (mask multi-channel
implementation)

Set PWM output frequency

Set to PWM output

Set to PWM output (mask multi-channel execution)
Turn on PWM output

Turn on PWM output (mask multi-channel execution)
Stop PWM output

Stop PWM output (mask multi-channel execution)
Set PWM duty cycle

Set PWM duty cycle (mask multi-channel execution)
Set to PWM capture

Clear Capture Pulse Count

Set to ADC acquisition

Set to ADC acquisition (mask multi-channel execution)
Set the ADC sampling rate

Get 10 input level value

36/ 81

ploiger

Interface Name
IOGetInVal_m

|OGetPulseRemain
|OGetPulseRemain_m

CapGetVal
ADCGetVal
ADCGetVal_m
JIOReboot
JIOSetVce
JIOSetVio
JIOSetID

JIOIntoBoot
JTool-12C APl interface

Interface Name
12CScan
I2CWrite
|I2CRead
I2CReadWithDelay
EEWrite
EERead
I2CRegisterIntCallback
I2CCloselntCallback

JI2CReboot

JTool

Overview
Get IO input level value (mask multi-channel execution)
Get Pulse Output Remaining Count

Get pulse output remaining count (mask multi-channel
implementation)

Get PWM capture value

Get ADC sample values

Get ADC sample values (mask multi-channel execution)
Restart the JIO device

Set the JIO VCC output voltage

Set the JIO VIO level

Set the ID of the JIO device.

Restart JIO and enter bootloader

Overview
Scan the 12C slave address
12C write data
12C read data
I2C read data (with delay)
EEPROM write data
EEPROM read data
Register interrupt callback function
Close interrupt callback function

Restart the JI2C device

371781

ploiger

Interface Name
JI2CSetVce
JI2CSetVio
JI12CSetSpeed
JI2CSetID

JI2CIntoBoot
JTool-SPI APl interface

Interface Name
SPIWriteOnly
SPIReadOnly
SPIWriteRead
QSPIWriteOnly

QSPIReadOnly

SPIWriteWithCMD

SPIReadWithCMD

SPIRegisterIntCallback
SPICloselntCallback
JSPIReboot
JSPISetVce
JSPISetVio
JSPISetSpeed
JSPISetlD

JSPIlIntoBoot

JTool

Overview
Set the JI12C VCC output voltage
Set the JI2C VIO level
Set JI2C communication rate
Set the ID of the JI2C device.

Restart JI2C and enter bootloader

Overview
SPI write-only data
SPI| read data only
SPI write and read data at the same time
QSPI write-only data
QSPI read data only

SPI writes data with instructions (CMD, ADDR, ALT,
DUMMY)

SPI read data with instructions (CMD, ADDR, ALT,
DUMMY)

Register interrupt callback function
Close interrupt callback function
Restart the JSPI device

Setting the JSPI VCC output voltage
Set the JSPI VIO level

Set the JSPI communication rate
Set the JSPI device ID.

Restart JSPI and enter bootloader

38/ 81

‘o] JTool

-------- Public Interface--------

DevicesScan

View currently connected devices

Syntax

char* DevicesScan (
int DevType
int* OutCnt

)5

Parameters
[in] DevType device type, see dev_type enum enumeration value

[out] outCnt returns the number of devices scanned

Return Value
The scanned device, as a string, if multiple devices are scanned, split by \r\n

DevOpen
Open Device

Syntax

void* DevOpen (
int DevType
char* Sn
int Id

)s

Parameters

[in] DevType device type, see dev_type enum enumeration value

[in] sn specify the device SN to open, string type, if not specified, please use NULL
[in] Id specifies the ID of the device to be opened. The value range is from 0 to 65535.
If not specified, use -1.

Return Value
If the device is opened successfully, the device handle (that is, the device pointer) is

39/ 81

‘o] JTool

returned. This handle is required for subsequent operations.
If open fails, return NULL

DevClose
Shut down device

Syntax

BOOL DevClose (

void* DevHandle

)5

Parameters
[in] DevHandle device handle (l. E. Device pointer) that needs to be closed

Return Value
Returns TRUE if the close was successful
If the close fails, return FALSE

I0SetNone

Single pin set to null mode

Syntax

ErrorType IOSetNone (
void* DevHandle

uint32_t ionum

)5

Parameters
[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone

If the operation fails, return an error code reference ErrorType enumeration value

40/ 81

‘o] JTool

I0SetNone_m

Multiple pins set to null mode (mask multi-channel execution)

Syntax

ErrorType IOSetNone_m (
void* DevHandle

uint32_t iomask

)5

Parameters
[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

10Setin

Single pin set to 10 input

Syntax

ErrorType IOSetIn (
void* DevHandle
uint32_t ionum
BOOL pullup
BOOL pulldown

)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)
[in] pullup whether to pull up

[in] pulldown drop-down

Return Value
If the operation succeeds, returns ErrNone

411781

‘o] JTool

If the operation fails, return an error code reference ErrorType enumeration value

I0Setin_m

Multiple pins set to 1O input (mask multi-channel implementation)

Syntax

ErrorType IOSetIn_m (
void* DevHandle
uint32_t iomask
uint32_t pullups
uint32_t pulldowns
)s

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)
[in] pullups pull up (bitwise enable)

[in] pulldowns whether to pull down (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

|0SetOut

Single pin set to 10 output

Syntax

ErrorType IOSetOut (
void* DevHandle
uint32_t ionum
BOOL pp

);
Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

42/ 81

‘o]
[in] pp Whether push-pull output

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

10SetOut_m

Multiple pins set to IO output (mask multi-channel implementation)

Syntax

ErrorType IOSetOut_m (
void* DevHandle
uint32_t iomask
uint32_t pps
)s

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)
[in] pps Whether push-pull output (bit-enabled)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

10SetVal

A single pin sets the level of the output

Syntax

ErrorType IOSetVal (
void* DevHandle
uint32_t ionum

BOOL val
)s

Parameters

43/ 81

JTool

ploiger JTool

[in] DevHandle device Handle
[in] ionum single pin serial number (starting from 1)
[in] val whether to output high level

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I0SetVal_m

Multiple pins to set the level of the output (mask multi-channel implementation)

Syntax

ErrorType IOSetVal m (
void* DevHandle
uint32_t iomask
uint32_t vals

)5

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)
[in] vals whether to output high level (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

10SetOutWithVal

A single pin is set to 10 output while setting the output level

Syntax

44/ 81

‘o] JTool

ErrorType IOSetOutWithVal (
void* DevHandle
uint32_t ionum
BOOL pp
BOOL val

)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)
[in] pp Whether push-pull output

[in] val whether to output high level

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

10SetOutWithVal_m

Multiple pins are set to 10 output while setting the output level (mask multi-channel
execution)

Syntax

ErrorType IOSetOutWithvVal m (
void* DevHandle
uint32_t iomask
uint32_t pps
uint32_t vals
)

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)
[in] pps Whether push-pull output (bit-enabled)

[in] vals whether to output high level (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone

45/ 81

ploiger JTool

If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOn

Single pin pulse output normally on (pulse output must first be set as output using
|0SetOut or I0SetOut_m)

Syntax

ErrorType IOPulseOn (
void* DevHandle
uint32_t ionum
uint32_t freq

)5

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[in] freq pulse frequency (refer to JIO drop-down box for optional values)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOn_m

Multi-pin pulse output normally on (mask multi-channel implementation) (pulse output
requires the pin to be set as output using |0SetOut or [0OSetOut_m)

Syntax

ErrorType IOPulseOn_m (
void* DevHandle
uint32_t iomask
uint32_t* freqgs
)

Parameters
[in] DevHandle device Handle
[in] iomask multiple pin bit numbers (bitwise enable)

46/ 81

ploiger JTool

[in] fregs pulse frequency array (please pass in the 32-Channel uint32_t array and fill in
the required values in the corresponding positions) (for optional values, see The JIO drop-
down box)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOff

Single pin pulse output stop

Syntax

ErrorType IOPulseOff (
void* DevHandle

uint32_t ionum

)s

Parameters
[in] DevHandle device Handle
[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOff_m

Multi-pin pulse output stop (mask multi-channel implementation)

Syntax

ErrorType IOPulseOff m (
void* DevHandle

uint32_t iomask

)5

Parameters
[in] DevHandle device Handle

47181

ploiger JTool

[in] iomask multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseCnt

Single pin outputs a fixed number of pulses (pulse output requires the pin to be set as
output first using 10SetOut or I0SetOut_m)

Syntax

ErrorType IOPulseCnt (
void* DevHandle
uint32_t ionum
uint32_t cnt
uint32_t freq

)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[in] cnt number of pulses

[in] freq pulse frequency (refer to JIO drop-down box for optional values)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseCnt_m

Multiple pins output a fixed number of pulses (mask multi-channel implementation) (pulse
output needs to use I0SetOut or I0SetOut_m to set the pin as output first)

Syntax

48 /81

ploiger JTool

ErrorType IOPulseCnt_m (
void* DevHandle
uint32_t iomask
uint32_t* cnts
uint32_t* freqgs
)

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[in] cnts pulse quantity array (please pass in a 32-Channel uint32_t type array and fill in
the required values in the corresponding positions)

[in] fregs pulse frequency array (please pass in the 32-Channel uint32_t array and fill in
the required values in the corresponding positions) (for optional values, see The JIO drop-
down box)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseFreq
Single pin sets pulse output frequency

Syntax

ErrorType IOPulseFreq (
void* DevHandle
uint32_t ionum
uint32_t freq

)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[in] freq pulse frequency (refer to JIO drop-down box for optional values)

Return Value
If the operation succeeds, returns ErrNone

49/ 81

ploiger JTool

If the operation fails, return an error code reference ErrorType enumeration value

IOPulseFreq_m
Multiple pins set pulse output frequency (mask multi-channel implementation)

Syntax

ErrorType IOPulseFreq_m (
void* DevHandle
uint32_t iomask
uint32_t* freqgs
)s

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[in] fregs pulse frequency array (please pass in the 32-Channel uint32_t array and fill in
the required values in the corresponding positions) (for optional values, see The JIO drop-
down box)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetFreq

Set PWM output frequency (applies to all PWM channels)

Syntax

ErrorType PWMSetFreq (
void* DevHandle
uint32_t freq

)E
Parameters

[in] DevHandle device Handle
[in] freq PWM frequency (refer to the JIO drop-down box for optional values)

50/ 81

‘o] JTool

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOut

Single pin set to PWM output

Syntax

ErrorType PWMSetOut (
void* DevHandle

uint32_t ionum

)5

Parameters
[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOut m

Multiple pins set to PWM output (mask multi-channel implementation)

Syntax

ErrorType PWMSetOut_m (
void* DevHandle

uint32_t iomask

)5

Parameters
[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone

51/81

‘o] JTool

If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOn

Single pin turns on PWM output

Syntax

ErrorType PWMSetOn (
void* DevHandle

uint32_t ionum

)5

Parameters
[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOn_m

Multiple pins on PWM output (mask multi-channel implementation)

Syntax

ErrorType PWMSetOn_m (
void* DevHandle

uint32_t iomask

)5

Parameters
[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

52 /81

‘o] JTool

PWMSetOff

Single pin stop PWM output

Syntax

ErrorType PWMSetOff (
void* DevHandle

uint32_t ionum

)5

Parameters
[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOff_ m

Multiple pins stop PWM output (mask multi-channel implementation)

Syntax

ErrorType PWMSetOff m (
void* DevHandle

uint32_t iomask

)5

Parameters
[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

53 /81

‘o] JTool

PWMSetDuty

Single pin set PWM duty cycle

Syntax

ErrorType PWMSetDuty (
void* DevHandle
uint32_t ionum
uintl6_t duty

)s

Parameters
[in] DevHandle device Handle
[in] ionum single pin serial number (starting from 1)

[in] duty PWM duty cycle (0~1000 corresponding duty cycle 0% ~ 100)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetDuty m

Multiple pins set PWM duty cycle (mask multi-channel implementation)

Syntax

ErrorType PWMSetDuty m (
void* DevHandle
uint32_t iomask
uintl6e_t* dutys
)

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[in] dutys PWM duty cycle array (please pass in a 32-Channel uint16_t array and fill in
the required values in the corresponding positions)(0~1000 corresponds to a duty cycle of
0% ~ 100)

54/ 81

pl JTool

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

CapSetin

Set to PWM capture (Channel 1 only)

Syntax

ErrorType CapSetIn (
void* DevHandle

uint32_t ionum

)5

Parameters
[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

CapClearCnt
Clear Capture Pulse Count (only supported on channel 1)

Syntax

ErrorType CapClearCnt (
void* DevHandle

uint32_t ionum

)5

Parameters
[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone

55/ 81

pibiger
If the operation fails, return an error code reference ErrorType enumeration value

ADCSetln
Single pin set for ADC acquisition

Syntax

ErrorType ADCSetIn (
void* DevHandle
uint32_t ionum
BOOL isdiff

)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[in] isdiff is it differential (1,3 channels support differential)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCSetln_m

Multiple pins set for ADC acquisition (mask multi-channel implementation)

Syntax

ErrorType ADCSetIn_m (
void* DevHandle
uint32_t iomask
uint32_t isdiffs

)s

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[in] isdiffs is it differential (bitwise enable)(1,3 channels support differential)

JTool

56 / 81

p| JTool

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCSetSamp

Set the ADC sampling rate (applies to all ADC channels)

Syntax

ErrorType ADCSetSamp (
void* DevHandle

uint32_t samp
)

Parameters
[in] DevHandle device Handle
[in] samp ADC sampling rate

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

10GetinVal

Single pin to get 10 input level value

Syntax

ErrorType IOGetInVal (
void* DevHandle
uint32_t ionum

BOOL* val
)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[out] val the level value returned, O represents low level, 1 represents high level

57 /81

p| JTool

Return Value
If the operation succeeds, returns ErrNone

If the operation fails, return an error code reference ErrorType enumeration value

I0GetIinVal_m

Multiple pins get 10 input level values (mask multi-channel execution)

Syntax

ErrorType IOGetInVal m (
void* DevHandle
uint32_t iomask

uint32_t* vals

)s

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[out] vals the returned level value, (please pass in a single pointer of uint32_t type)
(judge the high and low levels by bits)

Return Value
If the operation succeeds, returns ErrNone

If the operation fails, return an error code reference ErrorType enumeration value

I0GetPulseRemain
Single pin to get pulse output residual count

Syntax

ErrorType IOGetPulseRemain (
void* DevHandle
uint32_t ionum

uint32_t* remaincnt

)s

Parameters
[in] DevHandle device Handle

58 /81

p|b|ger JTool

[in] ionum single pin serial number (starting from 1)
[out] remaincnt returns the number of remaining pulses for a single channel (pass in a
single pointer of type uint32_t)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I0GetPulseRemain_m
Multiple Pins Get Pulse Output Remaining Count (mask Multi-Channel Execution)

Syntax

ErrorType I0GetPulseRemain_m (
void* DevHandle
uint32_t iomask

uint32_t* remaincnts

)5

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[out] remaincnts return the number of remaining pulses of multiple channels, (please
pass in an array of uint32_t type of 32 channels, the number of remaining pulses of the
corresponding channel will be returned)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

CapGetVal

Get PWM capture value (only supported on channel 1)

Syntax

59/ 81

p|b|ge(JTool

ErrorType CapGetVal (
void* DevHandle
uint32_t ionum
uint32_t* freq
uintle_t* duty
uint32_t* pulsecnt
)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[out] freq returns the captured frequency (pass in a single pointer of type uint32_t)
[out] duty returns the captured duty cycle (pass in a single pointer of type uint16_t)
[out] pulsecnt returns the number of captured pulses (pass in a single pointer of type
uint32_t)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCGetVal

Single pin to get ADC sample value

Syntax

ErrorType ADCGetVal (
void* DevHandle
uint32_t ionum
uintlée_t* adval

)s

Parameters

[in] DevHandle device Handle

[in] ionum single pin serial number (starting from 1)

[out] adval returns a single channel ADC sample (pass in a single pointer of type
uint16_t)

Return Value

60/ 81

p|b|ge(JTool

If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCGetVal_m

Multiple pins to get ADC sample values (mask multi-channel execution)

Syntax

ErrorType ADCGetVal m (
void* DevHandle
uint32_t iomask
uintle_t* advals

)s

Parameters

[in] DevHandle device Handle

[in] iomask multiple pin bit numbers (bitwise enable)

[out] advals return ADC sample values of multiple channels (pass in a 32-channel array
of uint16_t type to return ADC sample values of the corresponding channels)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOReboot
Restart the JIO device

Syntax

ErrorType JIOReboot (

void* DevHandle

)s

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone

61/81

p|b|ger JTool

If the operation fails, return an error code reference ErrorType enumeration value

JIOSetVcc
Setting the JIOVCC output voltage

Syntax

ErrorType JIOSetVcc (
void* DevHandle

uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val VCC option enumeration value, different models may support different, specific
reference JIO interface drop-down box (for example: 0 - 5V; 1 - 3.3V; 2-off)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOSetVio
Set the JIOVIO level

Syntax

ErrorType JIOSetVio (
void* DevHandle

uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val VIO option enumeration value. Different models may support different values.
For details, please refer to the JIO interface drop-down box (for example: 0 - 3.3V; 1 -
1.8V).

Return Value

62 /81

p|b|ger JTool

If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOSetID
Set the ID of the JIO device.

Syntax

ErrorType JIOSetID (
void* DevHandle
uintl6e_t val

)5

Parameters
[in] DevHandle device Handle
[in] val ID value (0~65535)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOIntoBoot

Restart JIO and enter bootloader
Syntax

ErrorType JIOIntoBoot (

void* DevHandle

)s

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

63 /81

pi

-------- JI2C interface--------

12CScan

Scan the 12C slave address

Syntax

ErrorType I2CScan (

void* DevHandle
uint8 _t* cnt
uint8_t* result

)s

Parameters

[in] DevHandle device Handle

[out] cnt returns the number of scanned slave addresses

[out] result returns the scanned slave address (be sure to pass in 128 arrays of uint8 t

type, and the scanned address will be stored in this array)

Return Value

If the operation succeeds, returns ErrNone

If the operation fails, return an error code reference ErrorType enumeration value

I2CWrite

12C write data

Syntax

ErrorType I2CWrite (

void* DevHandle
uint8_t slave_addr,
REGADDR_TYPE reg_type,
uint32_t reg_addr,
uintl6e_t len

uint8_t* data

)s

Parameters

64 /81

JTool

p|b|ger JTool

[in] DevHandle device Handle

[in] slave_addr slave address (8-bit mode)

[in] reg_type register address type, refer to REGADDR_TYPE enumeration value
[in] reg_addr register Address

[in] 1len write Length

[in] data array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I2CRead
I2C read data

Syntax

ErrorType I2CRead (
void* DevHandle
uint8_t slave_addr,
REGADDR_TYPE reg_type,
uint32_t reg_addr,
uintl6_t len
uint8_t* buf
)s

Parameters

[in] DevHandle device Handle
[in] slave_addr slave address (8-bit mode)
[in] reg_type register address type, refer to REGADDR_TYPE enumeration value
[in] reg_addr register Address
[in] len read Length
[out] buf read the array in which the data is stored (make sure the array is at least = =
len)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

65/ 81

pl JTool

I2CReadWithDelay
I2C read data (with delay)

Syntax

ErrorType I2CReadWithDelay (
void* DevHandle
uint8_t slave_addr,
REGADDR_TYPE reg_type,
uint32_t reg_addr,
uintle_t len
uint8_t* buf
uint8_t sr_delay,
uint8_t raddr_delay

)5

Parameters

[in] DevHandle device Handle

[in] slave_addr slave address (8-bit mode)

[in] reg_type register address type, refer to REGADDR_TYPE enumeration value
[in] reg_addr register Address

[in] len read Length

[out] buf read the array in which the data is stored (make sure the array is at least = =
len)

[in] sr_delay read plus delay wait (before Sr repeat start condition)

[in] raddr_delay read plus delay wait (after sending the read address)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

EEWTrite
EEPROM write data

Syntax

66 / 81

p|b|ge(JTool

ErrorType EEWrite (
void* DevHandle
uint8_t base_slave_addr,
REGADDR_TYPE reg_type,
uintl6_t page_size,
uint32_t reg_addr,
uint32_t len
uint8_t* data
)

Parameters

[in] DevHandle device Handle

[in] base_slave_addr base slave address (EEPROM with multiple blocks has multiple
slave addresses, please use the first one)(8-bit mode)

[in] reg_type register address type, refer to REGADDR_TYPE enumeration value
(EEPROM can only be 8 bits or 16 bits, refer to the specific model)

[in] page_size page size of EEPROM (make sure this parameter is correct for cross-
page processing)

[in] reg_addr register Address

[in] len write Length

[in] data array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

EERead
EEPROM read data

Syntax

67 /81

p| JTool

ErrorType EERead (
void* DevHandle
uint8_t base_slave_addr,
REGADDR_TYPE reg_type,
uint32_t reg_addr,
uint32_t len
uint8_t* buf
)s

Parameters

[in] DevHandle device Handle

[in] base_slave_addr base slave address (EEPROM with multiple blocks has multiple
slave addresses, please use the first one)(8-bit mode)

[in] reg_type register address type, refer to REGADDR_TYPE enumeration value
(EEPROM can only be 8 bits or 16 bits, refer to the specific model)

[in] reg_addr register Address

[in] len read Length

[out] buf read the array in which the data is stored (make sure the array is at least = =
len)

Return Value
If the operation succeeds, returns ErrNone

If the operation fails, return an error code reference ErrorType enumeration value

I2CRegisterintCallback

Register interrupt callback function for I2C INT pin

Syntax

ErrorType I2CRegisterIntCallback (
void* DevHandle
INT_TYPE inttype
I2CIntCallbackFun callback)

Parameters
[in] DevHandle device Handle
[in] inttype interrupt trigger type, refer to INT_TYPE enumeration value

[in] callback interrupt callback function pointer, custom interrupt function (parameter

68 /81

[d o
pibiger JTool
and return value are void), bring the function name into this parameter, this function will be

executed when the interrupt is triggered

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I2CCloselntCallback

Interrupt callback function to close I12C INT pin

Syntax

ErrorType I2CCloseIntCallback(void* DevHandle)

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JI2CReboot
Restart the JI2C device

Syntax

ErrorType JI2CReboot (
void* DevHandle

)5

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

69/ 81

p|b|ger JTool

JI2CSetVcc
Setting the JI2CVCC output voltage

Syntax

ErrorType JI2CSetVcc (
void* DevHandle

uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val VCC option enumeration value, different models may support different, specific
reference JI2C interface drop-down box (for example: 0 - 5V; 1 - "= VIO" ; 2-0ff)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JI2CSetVio
Set the JI2CVIO level

Syntax

ErrorType JI2CSetVio (
void* DevHandle

uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val VIO option enumeration value, different models may support different, specific
reference JI2C interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

70/ 81

p|b|ge(JTool

JI2CSetSpeed

Set JI2C communication rate

Syntax

ErrorType JI2CSetSpeed (
void* DevHandle

uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val 12C rate option enumeration value, different models may support different,
specific reference JI2C interface drop-down box (for example: 0 - 10K; 1 - 50K)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JI2CSetID
Set the ID of the JI2C device.

Syntax

ErrorType JI2CSetID (
void* DevHandle
uintl6_t val

)5

Parameters
[in] DevHandle device Handle
[in] val ID value (0~65535)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

711781

pl JTool

JI2CIntoBoot

Restart JI2C and enter bootloader
Syntax

ErrorType JI2CIntoBoot (

void* DevHandle

)5

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

-------- JSPI interface--------

SPIWriteOnly

SPI write-only data

Syntax

ErrorType SPIWriteOnly (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
uint32_t len
uint8 t* dataw)

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] len write Length

[in] dataw array of data written

Return Value
If the operation succeeds, returns ErrNone

72181

pl JTool

If the operation fails, return an error code reference ErrorType enumeration value

SPIReadOnly

SPI read data only

Syntax

ErrorType SPIReadOnly (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
uint32_t len
uint8_t* bufr)

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] len read Length

[out] bufr read the array in which the data is stored (make sure the array is at least = =
len)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIWriteRead

SPI write and read data at the same time

Syntax

ErrorType SPIWriteRead (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
uint32_t len
uint8 t* dataw

uint8 t* bufr)

73181

pl JTool

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] len read and write length

[in] dataw array of data written

[out] bufr read the array in which the data is stored (make sure the array is at least = =
len)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

QSPIWriteOnly
QSPI write-only data

Syntax

ErrorType QSPIWriteOnly (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
uint32_t len
uint8_t* dataw)

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] len write Length

[in] dataw array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

QSPIReadOnly

QSPI read data only

74181

p|b|ger JTool

ErrorType QSPIReadOnly (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
uint32_t 1len
uint8_t* bufr)

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] len read Length

[out] bufr read the array in which the data is stored (make sure the array is at least = =
len)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIWriteWithCMD
SPI writes data with instructions (CMD, ADDR, ALT, DUMMY)

Syntax

75/ 81

pl JTool

ErrorType SPIWriteWithCMD (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
QSPI_TYPE qgspitype
FIELDLEN_TYPE cmdtype
uint32_t cmd
FIELDLEN_TYPE addrtype
uint32_t addr
FIELDLEN_TYPE alttype
uint32_t alt
FIELDLEN_TYPE dummytype
uint32_t len
uint8_t* dataw)

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] gspitype sSpi/qspi combination type, reference QSPI_TYPE enumeration value
[in] cmdtype cmd bytes, reference FIELDLEN_TYPE enumeration value

[in] cmd cmd

[in] addrtype addr Bytes, reference FIELDLEN_TYPE enumeration value

[in] addr addr

[in] alttype alt bytes, reference FIELDLEN_TYPE enumeration value

[in] alt alt

[in] dummytype number of dummy bytes, reference FIELDLEN_TYPE enumeration value
[in] 1len write Length

[in] dataw array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIReadWithCMD
SPI read data with instructions (CMD, ADDR, ALT, DUMMY)

Syntax

76/ 81

pl JTool

ErrorType SPIReadWithCMD (
void* DevHandle
SPICK_TYPE ck
SPIFIRSTBIT_TYPE firstbit
QSPI_TYPE qgspitype
FIELDLEN_TYPE cmdtype
uint32_t cmd
FIELDLEN_TYPE addrtype
uint32_t addr
FIELDLEN_TYPE alttype
uint32_t alt
FIELDLEN_TYPE dummytype
uint32_t len
uint8_t* bufr)

Parameters

[in] DevHandle device Handle

[in] ck clock type, refer to SPICK_TYPE enumeration value

[in] firstbit bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value
[in] gspitype sSpi/qspi combination type, reference QSPI_TYPE enumeration value

[in] cmdtype cmd bytes, reference FIELDLEN_TYPE enumeration value

[in] cmd cmd

[in] addrtype addr Bytes, reference FIELDLEN_TYPE enumeration value

[in] addr addr

[in] alttype alt bytes, reference FIELDLEN_TYPE enumeration value

[in] alt alt

[in] dummytype number of dummy bytes, reference FIELDLEN_TYPE enumeration value
[in] len read Length

[out] bufr read the array in which the data is stored (make sure the array is at least = =
len)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIRegisterintCallback

Register the interrupt callback function for the SPI INT pin

77181

p| JTool

Syntax

ErrorType SPIRegisterIntCallback (
void* DevHandle
INT_TYPE inttype
SPIIntCallbackFun callback)

Parameters

[in] DevHandle device Handle

[in] inttype interrupt trigger type, refer to INT_TYPE enumeration value

[in] callback interrupt callback function pointer, custom interrupt function (parameter
and return value are void), bring the function name into this parameter, this function will be
executed when the interrupt is triggered

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPICloselntCallback

Interrupt callback function to close SPI INT pin

Syntax

ErrorType SPICloseIntCallback(void* DevHandle)

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPIReboot
Restart the JSPI device

Syntax

78181

p|b|ge(JTool

ErrorType JSPIReboot (

void* DevHandle

)s

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetVcc
Setting the JSPIVCC output voltage

Syntax

ErrorType JSPISetVcc (
void* DevHandle
uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val VCC option enumeration value, different models may support different, specific
reference JSPI interface drop-down box (for example: 0 - 5V; 1 - "= VIO" ; 2-off)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetVio
Setting the JSPIVIO level

Syntax

79/ 81

p|b|ge(JTool

ErrorType JSPISetVio (
void* DevHandle

uint8_t val

)s

Parameters

[in] DevHandle device Handle

[in] val VIO option enumeration value, different models may support different, specific
reference JSPI interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetSpeed

Set the JSPI communication rate

Syntax

ErrorType JSPISetSpeed (
void* DevHandle
uint8_t val

)5

Parameters

[in] DevHandle device Handle

[in] val 12C rate option enumeration value, different models may support different,
specific reference JSPI interface drop-down box (for example: 0 - 468.75K; 1 - 937.5K)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetID
Set the JSPI device ID.

Syntax

80/ 81

p|b|ger JTool

ErrorType JSPISetID (
void* DevHandle
uintl6_t val

)s

Parameters
[in] DevHandle device Handle
[in] val ID value (0~65535)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPlintoBoot

Restart JSPI and enter bootloader
Syntax

ErrorType JSPIIntoBoot (

void* DevHandle

)s

Parameters
[in] DevHandle device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

81/81

	Introduction
	Simple example
	CMD application example in Powershell
	Application example of DLL in C# Program

	CMD command set
	help
	scan
	delay
	--------JIO --------
	iol
	iow
	ior
	pulseon
	pulseoff
	pulsecnt
	pwmon
	pwmoff
	pwmfreq
	capclear
	capon
	capget
	adcsamp
	adcon
	adcget
	jiovcc
	jiovio
	jioid
	jioreboot
	jioinboot
	-------- JI2C--------
	i2cwrite
	eewrite
	eeread
	eewritef
	eereadf
	i2cint
	ji2cvcc
	ji2cvio
	ji2cspd
	ji2cid
	ji2creboot
	ji2cinboot
	--------JSPI --------
	spiread
	spiwr
	qspiwrite
	qspiread
	spiwcmd
	spircmd
	spiint
	jspivcc
	jspivio
	jspispd
	jspiid
	jspireboot
	jspiinboot

	DLL API
	Enumeration type
	Interface Overview
	Public API interface
	JTool-IO API interface

	-------- Public Interface--------
	Syntax
	Return Value

	DevOpen
	Syntax
	Return Value

	DevClose
	Syntax
	Return Value

	-------- JIO interface--------
	Syntax
	Return Value

	IOSetNone_m
	Syntax
	Return Value

	IOSetIn
	Syntax
	Return Value

	IOSetIn_m
	Syntax
	Return Value

	IOSetOut
	Syntax
	Return Value

	IOSetOut_m
	Syntax
	Return Value

	IOSetVal
	Syntax
	Return Value

	IOSetVal_m
	Syntax
	Return Value

	IOSetOutWithVal
	Syntax
	Return Value

	IOSetOutWithVal_m
	Syntax
	Return Value

	IOPulseOn
	Syntax
	Return Value

	IOPulseOn_m
	Syntax
	Return Value

	IOPulseOff
	Syntax
	Return Value

	IOPulseOff_m
	Syntax
	Return Value

	IOPulseCnt
	Syntax
	Return Value

	IOPulseCnt_m
	Syntax
	Return Value

	IOPulseFreq
	Syntax
	Return Value

	IOPulseFreq_m
	Syntax
	Return Value

	PWMSetFreq
	Syntax
	Return Value

	PWMSetOut
	Syntax
	Return Value

	PWMSetOut_m
	Syntax
	Return Value

	PWMSetOn
	Syntax
	Return Value

	PWMSetOn_m
	Syntax
	Return Value

	PWMSetOff
	Syntax
	Return Value

	PWMSetOff_m
	Syntax
	Return Value

	PWMSetDuty
	Syntax
	Return Value

	PWMSetDuty_m
	Syntax
	Return Value

	CapSetIn
	Syntax
	Return Value

	CapClearCnt
	Syntax
	Return Value

	ADCSetIn
	Syntax
	Return Value

	ADCSetIn_m
	Syntax
	Return Value

	ADCSetSamp
	Syntax
	Return Value

	IOGetInVal
	Syntax
	Return Value

	IOGetInVal_m
	Syntax
	Return Value

	IOGetPulseRemain
	Syntax
	Return Value

	IOGetPulseRemain_m
	Syntax
	Return Value

	CapGetVal
	Syntax
	Return Value

	ADCGetVal
	Syntax
	Return Value

	ADCGetVal_m
	Syntax
	Return Value

	JIOReboot
	Syntax
	Return Value

	JIOSetVcc
	Syntax
	Return Value

	JIOSetVio
	Syntax
	Return Value

	JIOSetID
	Syntax
	Return Value

	JIOIntoBoot
	Syntax
	Return Value

	-------- JI2C interface--------
	Syntax
	Return Value

	I2CWrite
	Syntax
	Return Value

	I2CRead
	Syntax
	Return Value

	I2CReadWithDelay
	Syntax
	Return Value

	EEWrite
	Syntax
	Return Value

	EERead
	Syntax
	Return Value

	I2CRegisterIntCallback
	Syntax
	Return Value

	I2CCloseIntCallback
	Syntax
	Return Value

	JI2CReboot
	Syntax
	Return Value

	JI2CSetVcc
	Syntax
	Return Value

	JI2CSetVio
	Syntax
	Return Value

	JI2CSetSpeed
	Syntax
	Return Value

	JI2CSetID
	Syntax
	Return Value

	JI2CIntoBoot
	Syntax
	Return Value

	-------- JSPI interface--------
	Syntax
	Return Value

	SPIReadOnly
	Syntax
	Return Value

	SPIWriteRead
	Syntax
	Return Value

	QSPIWriteOnly
	Syntax
	Return Value

	QSPIReadOnly
	Syntax
	Return Value

	SPIWriteWithCMD
	Syntax
	Return Value

	SPIReadWithCMD
	Syntax
	Return Value

	SPIRegisterIntCallback
	Syntax
	Return Value

	SPICloseIntCallback
	Syntax
	Return Value

	JSPIReboot
	Syntax
	Return Value

	JSPISetVcc
	Syntax
	Return Value

	JSPISetVio
	Syntax
	Return Value

	JSPISetSpeed
	Syntax
	Return Value

	JSPISetID
	Syntax
	Return Value

	JSPIIntoBoot
	Syntax
	Return Value

