
JTool

1 / 81

jtool adcon 3 0 # Channel 3 as ADC sampling, do not use differential

$output = & "jtool" adcget 3 # Get the sample value of Channel 3

= 0

Try to convert the output to an integer

if ([int]::TryParse($output, [ref])) {

= [Math]::Round(* 3.3 / 4096,2)

"Conversion succeeded, output number: $number"

= [Math]::Abs(-3.3)

"Comparison deviation value: $number"

if($number -gt 0.3){ # judgment deviation

Write-Error "Compare failed, out of range"

}

} else {

$output

Write-Error "Conversion failed, the output is not a valid number"

}

Introduction

• Provides command-line tools for automating tasks using scripts
• Provide dll underlying API, written in C language, which can be called by various

application layer languages (C# Python Matlab Qt, etc.)
• You can use the ID number to distinguish between multiple identical devices
• The fastest implementation of upper-level development, only a few api functions to

achieve the required functions

Simple example
JTool CMD and DLL are command line script tools and secondary development libraries
for USB to I2C, USB to IO and other tools.

• CMD tools are usually useful in production test environments, such as implementing

automated actions or detection in bat batch scripts or Powershell scripts.
• DLL is used to provide API called by application layer to facilitate secondary

development (C#, Python, QT, Matlab, etc.)

CMD application example in Powershell
Get the ADC sample value of IO3 and judge whether it is within the range.

JTool

2 / 81

Before using cmd or dll, it is recommended to use the upper computer provided by us
to ensure normal use.

Application example of DLL in C# Program
Read I2C data

// Import DLLAPI

[DllImport("jtool.dll", CallingConvention = CallingConvention.Cdecl)]

public static extern IntPtr DevOpen(DevType DevType, string Sn, int Id);

[DllImport("jtool.dll", CallingConvention = CallingConvention.Cdecl)]

public static extern bool DevClose(IntPtr DevHandle);

[DllImport("jtool.dll", CallingConvention = CallingConvention.Cdecl)]

public static extern int I2CRead(IntPtr DevHandle, byte slave_addr, int reg_type,

UInt32 reg_addr, UInt16 len, byte[] buf);

private void Read()

{

// Open the device without specifying SN and ID, as long as there is an I2C

device

IntPtr p = DevOpen(DevType.dev_i2c, null, -1);

if (p == IntPtr.Zero)

{

Console.WriteLine("Failed to Open Device");

return;

}

int readlen = 16;

byte[] buffread = new byte[readlen];

I2CRead(p, 0xa0, 1, 0x 00, readlen, buffer);//Read slave address A0, register

address 00, read 16 bytes to buffer

Console.WriteLine(BitConverter.ToString (buffer).Replace("-", ""));// Print

the read data

DevClose(p);// Shut down the device

}

CMD command set

The command line is called in the system CMD program. If you double-click to open
jtool.exe directly, it will not run

JTool

3 / 81

jtool [command] [-Option 1] [-Option 2] [-Option n] [parameter 1] [parameter 2] [
parameter n]

jtool --help

jtool [command] -- help

Please call in CMD, as shown in the figure, start CMD in the jtool Directory

After opening the command line window, call jtool with the command and parameters.

The meaning and parameters of each command will be explained in detail below.

help
View all command collections

View the meaning and parameters of a single command

JTool

4 / 81

jtool scan

jtool delay 1000

Set IO1 high

jtool ioh 1

Set the device IO1 with ID 0 High

jtool ioh -i 0 1

Set all IO1 ~ IO4 high

jtool ioh -m 0x0f

scan
View all inserted jtool devices.

delay
Delay time (ms)

--------JIO --------

ioh
Set the IO port to high level.

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that needs to be set high

JTool

5 / 81

Set IO1 low

jtool iol 1

Set the device IO1 with ID 0 to low

jtool iol -i 0 1

Set all IO1 ~ IO4 low

jtool iol -m 0x0f

iol
Set the IO port low

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that needs to be set low

iow
Write IO port to fixed level

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The PIN number of the write level required

param1 The value of the level to be written

JTool

6 / 81

Read the level of IO1

jtool ior 1

Read the level of device IO1 with ID 0

jtool ior -i 0 1

Read the levels of IO1 and IO3 at the same time

jtool ior -m 0x05

ior
Read IO port level

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that requires the read level

pulseon
Output pulse normally on

Options/
Parameters

Description

-i Use the device with the specified id

Write IO1 low

jtool iow 1 0

Write the device IO1 with ID 0 High

jtool iow -i 0 1 1

Write IO1 and IO2 to high level, and IO3 and IO4 to low level

jtool iow -m 0x0f 0x03

JTool

7 / 81

IO1 output pulse normally open 400kHz

jtool pulseon 1 400000

The IO1 output pulse of the device with ID 0 is normally on 400kHz

jtool pulseon -i 0 1 400000

#4 channel simultaneous output pulse normally open 400kHz

jtool pulseon -m 0x0f 400000

Options/
Parameters

Description

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that requires a pulse output

param1

Frequency of pulse output (refer to JIO upper computer for optional
values)

pulseoff
Turn off output pulse

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that requires the turn-off pulse

JTool

8 / 81

IO1 output 1000 pulses 100kHz

jtool pulsecnt 1 1000 100000

Device IO1 with ID 0 outputs 1000 pulses 100kHz

jtool pulsecnt -i 0 1 1000 100000

#4 channel output 1000 pulses at the same time 100kHz

jtool pulsecnt -m 0x0f 1000 100000

pulsecnt
Output fixed pulse number

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that requires the pulse output

param1 Number of pulse outputs

param2

Frequency of pulse output (refer to JIO upper computer for optional
values)

pwmon
Turn on PWM output

IO1 off pulse

jtool pulseoff 1

Device IO1 shutdown pulse with ID 0

jtool pulseoff -i 0 1

#4 Channel Simultaneous Off Pulse

jtool pulseoff -m 0x0f

JTool

9 / 81

IO1 output PWM with 50% duty cycle

jtool pwmon 1 500

Device IO1 with ID 0 outputs PWM with 50% duty cycle

jtool pwmon -i 0 1 500

#4 channel simultaneous output PWM with 50% duty cycle

jtool pwmon -m 0x0f 500

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that requires a pulse output

param1

Duty cycle of the PWM output (0 to 1000 corresponds to a duty
cycle of 0% to 100)

pwmoff
Turn off PWM output

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number that needs to close the PWM

JTool

10 / 81

Set PWM frequency to 1kHz

jtool pwmfreq 1000

Set PWM frequency to 1kHz for devices with ID 0

jtool pwmfreq -i 0 1000

pwmfreq
Set PWM frequency (applies to all PWM channels)

Options/
Parameters

Description

-i Use the device with the specified id

param0

PWM output frequency (refer to JIO host computer for optional
values)

capclear
Clear PWM captured pulse count (Channel 1 only)

Options/
Parameters

Description

-i Use the device with the specified id

param0

The pin number that needs to clear the count (this parameter can only
be 1, only channel 1 supports PWM capture)

IO1 Close PWM

jtool pwmoff 1

Disable PWM for device IO1 with ID 0

jtool pwmoff -i 0 1

#4 channel at the same time off PWM

jtool pwmoff -m 0x0f

JTool

11 / 81

Turn on the capture function of IO1

jtool capon 1

The device with ID 0 clears the capture Pulse count of IO1

jtool capon -i 0 1

capon
Enable PWM capture (Channel 1 only)

Options/
Parameters

Description

-i Use the device with the specified id

param0

The pin number that needs to enable PWM capture (this parameter
can only be 1, only channel 1 supports PWM capture)

capget
Get PWM capture data (only channel 1 is supported)

Options/
Parameters

Description

-i Use the device with the specified id

param0

The PIN number of the capture value to be obtained (this parameter
can only be 1, only channel 1 supports PWM capture)

Clear the capture Pulse count of IO1

jtool capclear 1

The device with ID 0 clears the capture Pulse count of IO1

jtool capclear -i 0 1

JTool

12 / 81

Set the ADC frequency to 50Hz

jtool adcsamp 50

Set the ADC frequency to 50Hz for devices with ID 0

jtool adcsamp -i 0 50

adcsamp
Set the ADC sampling rate (applies to all ADC channels)

Options/
Parameters

Description

-i Use the device with the specified id

param0

Configure the sampling rate of ADC (refer to JIO host computer
for optional values)

adcon
Turn on ADC sampling

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 Pin number that requires ADC sampling to be enabled

param1

Whether it is Differential sampling (0 single-ended 1 differential) (set
to differential will occupy the next pin)

Get the captured data of IO1

jtool capget 1

The device with ID 0 obtains the captured data of IO1

jtool capget -i 0 1

JTool

13 / 81

Obtain the ADC sampling value of IO1

jtool adcget 1

The device with ID 0 obtains the ADC sample value of IO1

jtool adcget -i 0 1

Get the ADC sample values of IO1 and IO3

jtool adcget -m 0x05

adcget
Get ADC sample values

Options/
Parameters

Description

-i Use the device with the specified id

-m

Whether to execute in bitwise mask mode, used to execute multiple
pins at the same time

param0 The pin number needed to get the ADC sample value

jiovcc
Set the VCC output voltage of the JIO device

Enable ADC sampling of IO1

jtool adcon 1 0

Enable ADC sampling of IO1 (differential IO1 + IO-)

jtool adcon 1 1

Enable ADC sampling of IO1 for devices with ID 0

jtool adcon -i 0 1 0

#4 channel at the same time open ADC sampling (two differential)

jtool adcon -m 0x05 0x05

JTool

14 / 81

VCC voltage set to 5V

jtool jiovcc 0

VCC voltage set to 3.3V

jtool jiovcc 1

VCC voltage set to off

jtool jiovcc 2

VIO voltage set to 3.3V

jtool jiovio 0

Options/
Parameters

Description

-i Use the device with the specified id

param0
VCC option enumeration value, different models may support different,
see The JIO interface drop-down box (for example: 0 - 5V; 1 - 3.3V;
2-closed)

jiovio
Set the VIO level voltage of the JIO device

Options/
Parameters

Description

-i Use the device with the specified id

param0
VIO option enumeration value. Different models may support different
values. For details, please refer to the drop-down box of the JIO
interface (for example: 0 - 3.3V; 1 - 1.8V)

jioid
Set the ID of the JIO device.
This option is set to take effect after a reboot

JTool

15 / 81

Set the device id value to 1

jtool jioid 1

Set the id value of the device with the original id of 0 to 1

jtool jioid -i 0 1

jtool jioreboot

jtool jioinboot

Options/Parameters Description

-i Use the device with the specified id

param0 The id to be modified.

jioreboot
Restart the JIO device

Options/Parameters Description

-i Use the device with the specified id

jioinboot
JIO device into bootloader

Options/Parameters Description

-i Use the device with the specified id

-------- JI2C--------

i2cscan
Scan the I2C slave address

JTool

16 / 81

Scan the I2C slave address

jtool i2cscan

Use the device with id 0 to scan the I2C slave address

jtool i2cscan -i 0

Scan the I2C slave address and display it as a 7-bit address

jtool i2cscan -s

Options/
Parameters

Description

-i Use the device with the specified id

-s

slave7 uses 7-bit address mode (does not include read and
write bits)

i2cwrite
I2C write data

Options/
Parameters

Description

-i Use the device with the specified id

-s slave7 uses 7-bit address mode (does not include read and write bits)

param0 Slave address

param1

Register address (determine the type of register according to the
length, please fill in none without Register)

param2 Data to be written (array)

JTool

17 / 81

i2cread
I2C read data

Options/
Parameters

Description

-i Use the device with the specified id

-s slave7 uses 7-bit address mode (does not include read and write bits)

-d d1 read delay Sr plus delay (0 ~100ms)

-D d2 read delay plus delay after reading address (0 ~100ms)

param0 Slave address

param1

Register address (determine the type of register according to the
length, please fill in none without Register)

param2 Length to read (decimal)

Slave address a0 register address 00 write 11 22 33 44 55

jtool i2cwrite A0 00 11 22 33 44 55

Slave address a0 register address 0000 (representing register address is 2

bytes) write 11 22 33 44 55

jtool i2cwrite A0 0000 11 22 33 44 55

Slave address a0 register address 000000 (representing register address is 3

bytes) write 11 22 33 44 55

jtool i2cwrite A0 000000 11 22 33 44 55

JTool

18 / 81

eewrite
EEPROM write data
The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.
Need to make sure baseslave is correct
Need to make sure regaddr is the correct length
Need to make sure pagesize is correct (needed for cross-page writing)

Options/
Parameters

Description

-i Use the device with the specified id

-s slave7 uses 7-bit address mode (does not include read and write bits)

-B blockhigh Block in high (for 24AA(LC/FC)1025)

-p

(Required) page size of EEPROM for cross-page write processing
(decimal, in Byte)

param0 Slave address

param1

register address (determine the type of register according to the
length, eeprom some are 1 byte, some are 2 bytes)

param2 Data to be written (array)

Slave address a0 register address 00 reads 5 bytes

jtool i2cread A0 00 5

Slave address a0 register address 0000 (representing register address is 2

bytes) reads 5 bytes

jtool i2cread A0 0000 5

Slave address a0 register address 000000 (representing register address is 3

bytes) reads 5 bytes

jtool i2cread A0 000000 5

JTool

19 / 81

Example 24C01 register address 00 reads 5 bytes

jtool eeread A0 00 5

Example 24C32 register address 0000 (2 bytes for this model) reads 5 bytes

jtool eeread A0 0000 5

eeread
EEPROM read data
The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.
Need to make sure baseslave is correct
Need to make sure regaddr is the correct length

Options/
Parameters

Description

-i Use the device with the specified id

-s slave7 uses 7-bit address mode (does not include read and write bits)

-B blockhigh Block in high (for 24AA(LC/FC)1025)

param0 Slave address

param1

register address (determine the type of register according to the
length, eeprom some are 1 byte, some are 2 bytes)

param2 Length to read (decimal)

eewritef
EEPROM write file

Example 24C01 Register Address 00 Write 11 22 33 44 55

jtool eewrite -p 8 A0 00 11 22 33 44 55

Example 24C32 register address 0000 (2 bytes for this model) write 11 22 33 44

55

jtool eewrite -p 32 A0 0000 11 22 33 44 55

JTool

20 / 81

Example 24C01 Register Address 00 Write data.bin

jtool eewritef -p 8 A0 00 .\data.bin

Example 24C32 register address 0000 (2 bytes for this model) writes data.bin

jtool eewritef -p 32 A0 0000 .\data.bin

The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.
Need to make sure baseslave is correct
Need to make sure regaddr is the correct length
Need to make sure pagesize is correct (needed for cross-page writing)

Options/
Parameters

Description

-i Use the device with the specified id

-s slave7 uses 7-bit address mode (does not include read and write bits)

-B blockhigh Block in high (for 24AA(LC/FC)1025)

-p

(Required) page size of EEPROM for cross-page write processing
(decimal, in Byte)

param0 Slave address

param1

register address (determine the type of register according to the
length, eeprom some are 1 byte, some are 2 bytes)

param2 The file path needs to be written.

eereadf
EEPROM read data to file
EEPROM read data
The read and write operations of EEPROM have been cross-page and cross-block
processing. There is no need to worry about the call, and data of any length can be read
and written from any address.
Need to make sure baseslave is correct
Need to make sure regaddr is the correct length

JTool

21 / 81

Example 24C01 register address 00 reads 5 bytes to the current directory

jtool eereadf A0 00 5 .\

Example 24C32 register address 0000 (2 bytes for this model) reads 5 bytes into

the current directory

jtool eereadf A0 0000 5 .\

Options/
Parameters

Description

-i Use the device with the specified id

-s slave7 uses 7-bit address mode (does not include read and write bits)

-B blockhigh Block in high (for 24AA(LC/FC)1025)

param0 Slave address

param1

register address (determine the type of register according to the
length, eeprom some are 1 byte, some are 2 bytes)

param2 Length to read (decimal)

param3 The path to the folder to be saved (note that the folder is not a file)

i2cint
Detect interrupt pin for Interrupt

Options/
Parameters

Description

-i Use the device with the specified id

-w wait Whether to wait for an interrupt to exit the process

param0

Interrupt type (0: None 1: rising edge 2: Falling Edge 3: High Level
4: Low Level 5: Double Edge)

JTool

22 / 81

VCC voltage set to 5V

jtool ji2cvcc 0

VCC voltage set to "= VIO"

jtool ji2cvcc 1

VCC voltage set to off

jtool ji2cvcc 2

ji2cvcc
Set the VCC output voltage of the JI2C device

Options/
Parameters

Description

-i Use the device with the specified id

param0
VCC option enumeration value, different models may support different,
see the JI2C interface drop-down box (for example: 0 - 5V; 1 - "= VIO"
; 2-closed)

ji2cvio
Set the VIO level voltage of the JI2C device

Options/
Parameters

Description

-i Use the device with the specified id

param0

VIO option enumeration value, different models may support different,
see the JI2C interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

Detect rising edge interrupt

jtool i2cint 1

Exit after waiting for rising edge interrupt

jtool i2cint -w 1

JTool

23 / 81

I2C rate set to 100K

jtool ji2cspd 2

Set the device id value to 1

jtool ji2cid 1

Set the id value of the device with the original id of 0 to 1

jtool ji2cid -i 0 1

ji2cspd
Set the clock rate of the JI2C device

Options/
Parameters

Description

-i Use the device with the specified id

param0
I2C rate option enumeration value, different models may support
different, refer to the JI2C interface drop-down box (for example: 0 -
10K; 1 - 50K)

ji2cid
Set the ID of the JI2C device.
This option is set to take effect after a reboot

Options/Parameters Description

-i Use the device with the specified id

param0 The id to be modified.

ji2creboot
Restart the JI2C device

VIO voltage set to 3.3V

jtool ji2cvio 0

JTool

24 / 81

jtool ji2creboot

jtool ji2cinboot

spi Write to array (default clock and bit order)

jtool spiwrite 00 01 02 03 04 05

spi write array (clock HIGH_1EDG bit order LSB)

jtool spiwrite -m 2 -e 1 00 01 02 03 04 05

Options/Parameters Description

-i Use the device with the specified id

ji2cinboot
JI2C device into bootloader

Options/Parameters Description

-i Use the device with the specified id

--------JSPI --------

spiwrite
SPI write-only data

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB

param0 Data to be written (array)

JTool

25 / 81

spi read 5 bytes (default clock and bit order)

jtool spiread 5

spi read 5 bytes (clock HIGH_1EDG bit order LSB)

jtool spiread -m 2 -e 1 5

spiread
SPI read data only

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB

param0 Length to read

spiwr
SPI write while reading

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB

param0 Data to be written (array)

JTool

26 / 81

spi Write to array (default clock and bit order)

jtool qspiwrite 00 01 02 03 04 05

spi write array (clock HIGH_1EDG bit order LSB)

jtool qspiwrite -m 2 -e 1 00 01 02 03 04 05

qspiwrite
QSPI write-only data

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the QSPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies QSPI first order (default is 0): 0-MSB; 1-LSB

param0 Data to be written (array)

qspiread
QSPI read data only

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the QSPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies QSPI first order (default is 0): 0-MSB; 1-LSB

spi Write to array (default clock and bit order)

jtool spiwr 00 01 02 03 04 05

spi write array (clock HIGH_1EDG bit order LSB)

jtool spiwr -m 2 -e 1 00 01 02 03 04 05

JTool

27 / 81

spi read 5 bytes (default clock and bit order)

jtool qspiread 5

spi read 5 bytes (clock HIGH_1EDG bit order LSB)

jtool qspiread -m 2 -e 1 5

Options/
Parameters

Description

param0 Length to read

spiwcmd
SPI writes data with instructions (CMD, ADDR, ALT, DUMMY)

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB

-q

qspi Specifies the SPI/QSPI combination type (default is 0): 0-all one-
line; 1-all four-line; 2-data four-line only; 3-instruction one-line only

-c

cmd instruction (hexadecimal) For example: 00 represents a 1-byte
instruction; 0000 represents a 2-byte instruction; Maximum 4 bytes

-a

addr address (hexadecimal) For example: 00 represents a 1-byte
address; 0000 represents a 2-byte address; Maximum 4 bytes

-t

alt (hexadecimal) For example: 00 represents 1 byte alt; 0000
represents 2 bytes alt; Maximum 4 bytes

-d
dummy dummy empty period length (decimal) for example: 1
represents 1 byte dummy; 2 represents 2 bytes dummy; Maximum 4
bytes

param0 Data to be written (array)

JTool

28 / 81

spircmd
SPI read data with instructions (CMD, ADDR, ALT, DUMMY)

Options/
Parameters

Description

-i Use the device with the specified id

-m

mode Specifies the SPI clock mode (default is 0): 0-LOW_1EDG;
1-LOW_2EDG; 2-HIGH_1EDG; 3-HIGH_2EDG

-e endian specifies SPI first order (default is 0): 0-MSB; 1-LSB

-q

qspi Specifies the SPI/QSPI combination type (default is 0): 0-all one-
line; 1-all four-line; 2-data four-line only; 3-instruction one-line only

-c

cmd instruction (hexadecimal) For example: 00 represents a 1-byte
instruction; 0000 represents a 2-byte instruction; Maximum 4 bytes

-a

addr address (hexadecimal) For example: 00 represents a 1-byte
address; 0000 represents a 2-byte address; Maximum 4 bytes

-t

alt (hexadecimal) For example: 00 represents 1 byte alt; 0000
represents 2 bytes alt; Maximum 4 bytes

-d
dummy dummy empty period length (decimal) for example: 1
represents 1 byte dummy; 2 represents 2 bytes dummy; Maximum 4
bytes

param0 Length to read

spi write array {0x 55,0x 55,0x 55} cmd instruction is 0x01

jtool spiwcmd -c 01 55 55 55

spi write array {0x 55,0x 55,0x 55} cmd instruction is 0x 01 instruction phase

single line, data phase four line QSPI

jtool spiwcmd -q 2 -c 01 55 55 55

JTool

29 / 81

Detect rising edge interrupt

jtool spiint 1

Exit after waiting for rising edge interrupt

jtool spiint -w 1

spiint
Detect interrupt pin for Interrupt

Options/
Parameters

Description

-i Use the device with the specified id

-w wait Whether to wait for an interrupt to exit the process

param0

Interrupt type (0: None 1: rising edge 2: Falling Edge 3: High Level
4: Low Level 5: Double Edge)

jspivcc
Set the VCC output voltage of the JSPI device

Options/
Parameters

Description

-i Use the device with the specified id

param0
VCC option enumeration value, different models may support different,
see JSPI interface drop-down box (for example: 0 - 5V; 1 - "= VIO" ;
2-closed)

spi read 3 bytes cmd instruction is 0x01

jtool spircmd -c 01 3

spi reading 3 bytes cmd instruction is 0x 01 instruction phase single line, data

phase four line QSPI

jtool spircmd -q 2 -c 01 3

JTool

30 / 81

VIO voltage set to 3.3V

jtool jspivio 0

SPI rate set to 937.5k

jtool jspispd 21

jspivio
Set VIO-level voltage for JSPI devices

Options/
Parameters

Description

-i Use the device with the specified id

param0

VIO option enumeration value, different models may support different,
see JSPI interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

jspispd
Set the clock rate of the JSPI device

Options/
Parameters

Description

-i Use the device with the specified id

param0
SPI rate option enumeration value, different models may support
different, specific reference JSPI interface drop-down box (for
example: 0 - 468.75K; 1 - 937.5K)

VCC voltage set to 5V

jtool jspivcc 0

VCC voltage set to "= VIO"

jtool jspivcc 1

VCC voltage set to off

jtool jspivcc 2

JTool

31 / 81

Set the device id value to 1

jtool jspiid 1

Set the id value of the device with the original id of 0 to 1

jtool jspiid -i 0 1

jtool jspireboot

jtool jspiinboot

jspiid
Set the JSPI device ID.
This option is set to take effect after a reboot

Options/Parameters Description

-i Use the device with the specified id

param0 The id to be modified.

jspireboot
Restart the JSPI device

Options/Parameters Description

-i Use the device with the specified id

jspiinboot
JSPI device into bootloader

Options/Parameters Description

-i Use the device with the specified id

JTool

32 / 81

DLL API

jtool.dll is the lowest level dynamic link library written by C language to be compatible with
all other application layer language calls
jtool.dll provides the most simple and easy-to-use API, which can realize the required
functions most quickly.
Just import the jtool.dll file into your own project, where the jtool. H file contains all API
interface and enumeration declarations

Enumeration type

JTool

33 / 81

typedef enum

{

dev_all = -1,

dev_i2c = 0,

dev_io,

dev_spi,

dev_can,

dev_max,

} dev_type_enum;

typedef enum

{

ErrNone = 0,// success

ErrParam = 1 << 0,// Parameter error

ErrDisconnect = 1 << 1,// USB disconnect

ErrBusy = 1 << 2,// USB send busy

ErrWaiting = 1 << 3,// waiting for reply

ErrTimeOut = 1 << 4,// communication timeout

ErrDataParse = 1 << 5,// Communication data error

ErrFailACK = 1 << 6,// return failed parameter

} ErrorType;

typedef enum

{

REGADDR_NONE = 0,// address is not sent

REGADDR_8Bit = 1,// send 8-bit address

REGADDR_16Bit = 2,// send 16-bit address

REGADDR_24Bit = 3,// send 24-bit address

REGADDR_32Bit = 4,// send 32-bit address

} REGADDR_TYPE;

typedef enum

{

SINGLEALL = 0,// all stages are single line

QUADALL = 1,// all stages are four-wire

QUADDATA = 2,// only four lines in the data phase, other single lines

SINGLECMD = 3,// instruction phase single line only, other four lines

} QSPI_TYPE;

typedef enum

{

LOW_1EDG = 0,

JTool

34 / 81

LOW_2EDG = 1,

HIGH_1EDG = 2,

HIGH_2EDG = 3,

} SPICK_TYPE;

typedef enum

{

ENDIAN_MSB = 0,// high before

ENDIAN_LSB = 1,// Low before

} SPIFIRSTBIT_TYPE;

typedef enum

{

FIELD_NONE = 0,// none

FIELD_ONE,// 1 byte

FIELD_TWO,// 2 bytes

FIELD_THREE,// 3 bytes

FIELD_FOUR,// 4 bytes

} FIELDLEN_TYPE;

typedef enum

{

INT_NONE = 0,// none

INT_RISE = 1,// rising edge

INT_FALL = 2,// falling edge

INT_HIGH = 3,// high

INT_LOW = 4,// Low Level

INT_RISE_FALL = 5,// bilateral edge

} INT_TYPE;

//(JI2C, JSPI)INT pin interrupt callback function type

typedef void (*I2CIntCallbackFun)(void);

typedef void (*SPIIntCallbackFun)(void);

Interface Overview
Public API interface

Before operating the device, you need to use DevOpen to open the device
After the device is opened, the device will be occupied. Other processes cannot open the
occupied device again until the device is closed by DevClose or the process occupying the
device exits.

JTool

35 / 81

DevicesScan scans inserted devices, returned as a string

Interface Name Overview

DevicesScan View currently connected devices

DevOpen Turn on the device

DevClose Shut down the device

JTool-IO API interface

Most functions of the JTool-IO module provide additional_M ending API, which means that
it is executed in a bitwise mask mode to facilitate simultaneous execution of multiple pins.
For example:
If the lower 4 bits of 0x0f are 1, IO1 ~ IO4 are set at the same time
0x 03 The lower 2 bits are 1, both IO1 and IO2 are set
If some functions are applied to all channels, the API at the end of_M is not provided.

Interface Name Overview

IOSetNone Set to empty mode

IOSetNone_m Set to empty mode (mask multi-channel execution)

IOSetIn Set to IO input

IOSetIn_m Set to IO input (mask multi-channel execution)

IOSetOut Set to IO output

IOSetOut_m Set to IO output (mask multi-channel execution)

IOSetVal Set the level of the output

IOSetVal_m

Setting the level of the output (mask multi-channel
implementation)

IOSetOutWithVal Set to IO output while setting the output level

IOSetOutWithVal_m

Set to IO output while setting the output level (mask multi-
channel execution)

IOPulseOn Pulse output normally open

JTool

36 / 81

Interface Name Overview

IOPulseOn_m

Pulse output normally open (mask multi-channel
implementation)

IOPulseOff Pulse output stop

IOPulseOff_m Pulse output stop (mask multi-channel execution)

IOPulseCnt Output fixed pulse number

IOPulseCnt_m

Output fixed number of pulses (mask multi-channel
execution)

IOPulseFreq Set pulse output frequency

IOPulseFreq_m

Set pulse output frequency (mask multi-channel
implementation)

PWMSetFreq Set PWM output frequency

PWMSetOut Set to PWM output

PWMSetOut_m Set to PWM output (mask multi-channel execution)

PWMSetOn Turn on PWM output

PWMSetOn_m Turn on PWM output (mask multi-channel execution)

PWMSetOff Stop PWM output

PWMSetOff_m Stop PWM output (mask multi-channel execution)

PWMSetDuty Set PWM duty cycle

PWMSetDuty_m Set PWM duty cycle (mask multi-channel execution)

CapSetIn Set to PWM capture

CapClearCnt Clear Capture Pulse Count

ADCSetIn Set to ADC acquisition

ADCSetIn_m Set to ADC acquisition (mask multi-channel execution)

ADCSetSamp Set the ADC sampling rate

IOGetInVal Get IO input level value

JTool

37 / 81

Interface Name Overview

IOGetInVal_m Get IO input level value (mask multi-channel execution)

IOGetPulseRemain Get Pulse Output Remaining Count

IOGetPulseRemain_m

Get pulse output remaining count (mask multi-channel
implementation)

CapGetVal Get PWM capture value

ADCGetVal Get ADC sample values

ADCGetVal_m Get ADC sample values (mask multi-channel execution)

JIOReboot Restart the JIO device

JIOSetVcc Set the JIO VCC output voltage

JIOSetVio Set the JIO VIO level

JIOSetID Set the ID of the JIO device.

JIOIntoBoot Restart JIO and enter bootloader

JTool-I2C API interface

Interface Name Overview

I2CScan Scan the I2C slave address

I2CWrite I2C write data

I2CRead I2C read data

I2CReadWithDelay I2C read data (with delay)

EEWrite EEPROM write data

EERead EEPROM read data

I2CRegisterIntCallback Register interrupt callback function

I2CCloseIntCallback Close interrupt callback function

JI2CReboot Restart the JI2C device

JTool

38 / 81

Interface Name Overview

JI2CSetVcc Set the JI2C VCC output voltage

JI2CSetVio Set the JI2C VIO level

JI2CSetSpeed Set JI2C communication rate

JI2CSetID Set the ID of the JI2C device.

JI2CIntoBoot Restart JI2C and enter bootloader

JTool-SPI API interface

Interface Name Overview

SPIWriteOnly SPI write-only data

SPIReadOnly SPI read data only

SPIWriteRead SPI write and read data at the same time

QSPIWriteOnly QSPI write-only data

QSPIReadOnly QSPI read data only

SPIWriteWithCMD

SPI writes data with instructions (CMD, ADDR, ALT,
DUMMY)

SPIReadWithCMD

SPI read data with instructions (CMD, ADDR, ALT,
DUMMY)

SPIRegisterIntCallback Register interrupt callback function

SPICloseIntCallback Close interrupt callback function

JSPIReboot Restart the JSPI device

JSPISetVcc Setting the JSPI VCC output voltage

JSPISetVio Set the JSPI VIO level

JSPISetSpeed Set the JSPI communication rate

JSPISetID Set the JSPI device ID.

JSPIIntoBoot Restart JSPI and enter bootloader

JTool

39 / 81

char* DevicesScan (

int DevType

int* OutCnt

);

void* DevOpen (

int DevType

char* Sn

int Id

);

-------- Public Interface--------

DevicesScan
View currently connected devices

Syntax

Parameters
device type, see dev_type_enum enumeration value
returns the number of devices scanned

Return Value
The scanned device, as a string, if multiple devices are scanned, split by \r\n

DevOpen
Open Device

Syntax

Parameters
device type, see dev_type_enum enumeration value

specify the device SN to open, string type, if not specified, please use NULL
specifies the ID of the device to be opened. The value range is from 0 to 65535.

If not specified, use -1.

Return Value
If the device is opened successfully, the device handle (that is, the device pointer) is

[in] DevType

[out] OutCnt

[in] DevType

[in] Sn

[in] Id

JTool

40 / 81

BOOL DevClose (

void* DevHandle

);

ErrorType IOSetNone (

void* DevHandle

uint32_t ionum

);

returned. This handle is required for subsequent operations.
If open fails, return NULL

DevClose
Shut down device

Syntax

Parameters
device handle (I. E. Device pointer) that needs to be closed

Return Value
Returns TRUE if the close was successful
If the close fails, return FALSE

-------- JIO interface--------

IOSetNone
Single pin set to null mode

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] DevHandle

[in] ionum

JTool

41 / 81

[in] pullup

ErrorType IOSetNone_m (

void* DevHandle

uint32_t iomask

);

ErrorType IOSetIn (

void* DevHandle

uint32_t ionum

BOOL pullup

BOOL pulldown

);

[in] ionum

IOSetNone_m
Multiple pins set to null mode (mask multi-channel execution)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetIn
Single pin set to IO input

Syntax

Parameters

device Handle

single pin serial number (starting from 1)
whether to pull up

drop-down

Return Value
If the operation succeeds, returns ErrNone

[in] DevHandle

[in] iomask

[in] DevHandle

[in] pulldown

JTool

42 / 81

[in] pullups

ErrorType IOSetIn_m (

void* DevHandle

uint32_t iomask

uint32_t pullups

uint32_t pulldowns

);

ErrorType IOSetOut (

void* DevHandle

uint32_t ionum

BOOL pp

);

If the operation fails, return an error code reference ErrorType enumeration value

IOSetIn_m
Multiple pins set to IO input (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
pull up (bitwise enable)

whether to pull down (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetOut
Single pin set to IO output

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

[in] DevHandle

[in] iomask

[in] pulldowns

[in] DevHandle

[in] ionum

JTool

43 / 81

ErrorType IOSetOut_m (

void* DevHandle

uint32_t iomask

uint32_t pps

);

ErrorType IOSetVal (

void* DevHandle

uint32_t ionum

BOOL val

);

whether push-pull output

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetOut_m
Multiple pins set to IO output (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
whether push-pull output (bit-enabled)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetVal
A single pin sets the level of the output

Syntax

Parameters

[in] pp

[in] DevHandle

[in] iomask

[in] pps

JTool

44 / 81

[in] ionum

ErrorType IOSetVal_m (

void* DevHandle

uint32_t iomask

uint32_t vals

);

device Handle
single pin serial number (starting from 1)

whether to output high level

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetVal_m
Multiple pins to set the level of the output (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
whether to output high level (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetOutWithVal
A single pin is set to IO output while setting the output level

Syntax

[in] DevHandle

[in] val

[in] DevHandle

[in] iomask

[in] vals

JTool

45 / 81

[in] val

[in] vals

ErrorType IOSetOutWithVal_m (

void* DevHandle

uint32_t iomask

uint32_t pps

uint32_t vals

);

Parameters
device Handle

single pin serial number (starting from 1)
whether push-pull output
whether to output high level

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOSetOutWithVal_m
Multiple pins are set to IO output while setting the output level (mask multi-channel
execution)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
whether push-pull output (bit-enabled)
whether to output high level (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone

ErrorType IOSetOutWithVal (

void* DevHandle

uint32_t ionum

BOOL pp

BOOL val

);

[in] DevHandle

[in] ionum

[in] pp

[in] DevHandle

[in] iomask

[in] pps

JTool

46 / 81

ErrorType IOPulseOn (

void* DevHandle

uint32_t ionum

uint32_t freq

);

ErrorType IOPulseOn_m (

void* DevHandle

uint32_t iomask

uint32_t* freqs

);

If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOn
Single pin pulse output normally on (pulse output must first be set as output using
IOSetOut or IOSetOut_m)

Syntax

Parameters
device Handle

single pin serial number (starting from 1)
pulse frequency (refer to JIO drop-down box for optional values)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOn_m
Multi-pin pulse output normally on (mask multi-channel implementation) (pulse output
requires the pin to be set as output using IOSetOut or IOSetOut_m)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)

[in] DevHandle

[in] ionum

[in] freq

[in] DevHandle

[in] iomask

JTool

47 / 81

[in] freqs

ErrorType IOPulseOff (

void* DevHandle

uint32_t ionum

);

ErrorType IOPulseOff_m (

void* DevHandle

uint32_t iomask

);

pulse frequency array (please pass in the 32-Channel uint32_t array and fill in
the required values in the corresponding positions) (for optional values, see The JIO drop-
down box)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOff
Single pin pulse output stop

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseOff_m
Multi-pin pulse output stop (mask multi-channel implementation)

Syntax

Parameters
device Handle

[in] DevHandle

[in] ionum

[in] DevHandle

JTool

48 / 81

ErrorType IOPulseCnt (

void* DevHandle

uint32_t ionum

uint32_t cnt

uint32_t freq

);

multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseCnt
Single pin outputs a fixed number of pulses (pulse output requires the pin to be set as
output first using IOSetOut or IOSetOut_m)

Syntax

Parameters
device Handle

single pin serial number (starting from 1)
number of pulses
pulse frequency (refer to JIO drop-down box for optional values)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseCnt_m
Multiple pins output a fixed number of pulses (mask multi-channel implementation) (pulse
output needs to use IOSetOut or IOSetOut_m to set the pin as output first)

Syntax

[in] iomask

[in] DevHandle

[in] ionum

[in] cnt

[in] freq

JTool

49 / 81

[in] cnts

[in] freqs

ErrorType IOPulseFreq (

void* DevHandle

uint32_t ionum

uint32_t freq

);

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
pulse quantity array (please pass in a 32-Channel uint32_t type array and fill in

the required values in the corresponding positions)
pulse frequency array (please pass in the 32-Channel uint32_t array and fill in

the required values in the corresponding positions) (for optional values, see The JIO drop-
down box)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOPulseFreq
Single pin sets pulse output frequency

Syntax

Parameters
device Handle

single pin serial number (starting from 1)
pulse frequency (refer to JIO drop-down box for optional values)

Return Value
If the operation succeeds, returns ErrNone

ErrorType IOPulseCnt_m (

void* DevHandle

uint32_t iomask

uint32_t* cnts

uint32_t* freqs

);

[in] DevHandle

[in] iomask

[in] DevHandle

[in] ionum

[in] freq

JTool

50 / 81

ErrorType IOPulseFreq_m (

void* DevHandle

uint32_t iomask

uint32_t* freqs

);

ErrorType PWMSetFreq (

void* DevHandle

uint32_t freq

);

If the operation fails, return an error code reference ErrorType enumeration value

IOPulseFreq_m
Multiple pins set pulse output frequency (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
pulse frequency array (please pass in the 32-Channel uint32_t array and fill in

the required values in the corresponding positions) (for optional values, see The JIO drop-
down box)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetFreq
Set PWM output frequency (applies to all PWM channels)

Syntax

Parameters
device Handle

PWM frequency (refer to the JIO drop-down box for optional values)

[in] DevHandle

[in] iomask

[in] freqs

[in] DevHandle

[in] freq

JTool

51 / 81

ErrorType PWMSetOut (

void* DevHandle

uint32_t ionum

);

ErrorType PWMSetOut_m (

void* DevHandle

uint32_t iomask

);

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOut
Single pin set to PWM output

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOut_m
Multiple pins set to PWM output (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone

[in] DevHandle

[in] ionum

[in] DevHandle

[in] iomask

JTool

52 / 81

ErrorType PWMSetOn (

void* DevHandle

uint32_t ionum

);

ErrorType PWMSetOn_m (

void* DevHandle

uint32_t iomask

);

If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOn
Single pin turns on PWM output

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOn_m
Multiple pins on PWM output (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] ionum

[in] DevHandle

[in] iomask

JTool

53 / 81

ErrorType PWMSetOff (

void* DevHandle

uint32_t ionum

);

ErrorType PWMSetOff_m (

void* DevHandle

uint32_t iomask

);

PWMSetOff
Single pin stop PWM output

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetOff_m
Multiple pins stop PWM output (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] ionum

[in] DevHandle

[in] iomask

JTool

54 / 81

ErrorType PWMSetDuty (

void* DevHandle

uint32_t ionum

uint16_t duty

);

ErrorType PWMSetDuty_m (

void* DevHandle

uint32_t iomask

uint16_t* dutys

);

PWMSetDuty
Single pin set PWM duty cycle

Syntax

Parameters
device Handle

single pin serial number (starting from 1)
PWM duty cycle (0~1000 corresponding duty cycle 0% ~ 100)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

PWMSetDuty_m
Multiple pins set PWM duty cycle (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
PWM duty cycle array (please pass in a 32-Channel uint16_t array and fill in

the required values in the corresponding positions)(0~1000 corresponds to a duty cycle of
0% ~ 100)

[in] DevHandle

[in] ionum

[in] duty

[in] DevHandle

[in] iomask

[in] dutys

JTool

55 / 81

ErrorType CapSetIn (

void* DevHandle

uint32_t ionum

);

ErrorType CapClearCnt (

void* DevHandle

uint32_t ionum

);

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

CapSetIn
Set to PWM capture (Channel 1 only)

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

CapClearCnt
Clear Capture Pulse Count (only supported on channel 1)

Syntax

Parameters
device Handle

single pin serial number (starting from 1)

Return Value
If the operation succeeds, returns ErrNone

[in] DevHandle

[in] ionum

[in] DevHandle

[in] ionum

JTool

56 / 81

ErrorType ADCSetIn (

void* DevHandle

uint32_t ionum

BOOL isdiff

);

[in] ionum

ErrorType ADCSetIn_m (

void* DevHandle

uint32_t iomask

uint32_t isdiffs

);

If the operation fails, return an error code reference ErrorType enumeration value

ADCSetIn
Single pin set for ADC acquisition

Syntax

Parameters

device Handle

single pin serial number (starting from 1)
is it differential (1,3 channels support differential)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCSetIn_m
Multiple pins set for ADC acquisition (mask multi-channel implementation)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
is it differential (bitwise enable)(1,3 channels support differential)

[in] DevHandle

[in] isdiff

[in] DevHandle

[in] iomask

[in] isdiffs

JTool

57 / 81

ErrorType ADCSetSamp (

void* DevHandle

uint32_t samp

);

ErrorType IOGetInVal (

void* DevHandle

uint32_t ionum

BOOL* val

);

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCSetSamp
Set the ADC sampling rate (applies to all ADC channels)

Syntax

Parameters
device Handle

ADC sampling rate

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOGetInVal
Single pin to get IO input level value

Syntax

Parameters
device Handle

single pin serial number (starting from 1)
the level value returned, 0 represents low level, 1 represents high level

[in] DevHandle

[in] samp

[in] DevHandle

[in] ionum

[out] val

JTool

58 / 81

ErrorType IOGetInVal_m (

void* DevHandle

uint32_t iomask

uint32_t* vals

);

ErrorType IOGetPulseRemain (

void* DevHandle

uint32_t ionum

uint32_t* remaincnt

);

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOGetInVal_m
Multiple pins get IO input level values (mask multi-channel execution)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
the returned level value, (please pass in a single pointer of uint32_t type)

(judge the high and low levels by bits)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOGetPulseRemain
Single pin to get pulse output residual count

Syntax

Parameters
device Handle

[in] DevHandle

[in] iomask

[out] vals

[in] DevHandle

JTool

59 / 81

[out] remaincnt

ErrorType IOGetPulseRemain_m (

void* DevHandle

uint32_t iomask

uint32_t* remaincnts

);

single pin serial number (starting from 1)
returns the number of remaining pulses for a single channel (pass in a

single pointer of type uint32_t)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

IOGetPulseRemain_m
Multiple Pins Get Pulse Output Remaining Count (mask Multi-Channel Execution)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
return the number of remaining pulses of multiple channels, (please

pass in an array of uint32_t type of 32 channels, the number of remaining pulses of the
corresponding channel will be returned)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

CapGetVal
Get PWM capture value (only supported on channel 1)

Syntax

[in] ionum

[in] DevHandle

[in] iomask

[out] remaincnts

JTool

60 / 81

[in] ionum

[out] freq

[out] duty

ErrorType ADCGetVal (

void* DevHandle

uint32_t ionum

uint16_t* adval

);

[in] ionum

Parameters

uint32_t)

device Handle
single pin serial number (starting from 1)
returns the captured frequency (pass in a single pointer of type uint32_t)
returns the captured duty cycle (pass in a single pointer of type uint16_t)

returns the number of captured pulses (pass in a single pointer of type

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCGetVal
Single pin to get ADC sample value

Syntax

Parameters

uint16_t)

device Handle
single pin serial number (starting from 1)
returns a single channel ADC sample (pass in a single pointer of type

Return Value

ErrorType CapGetVal (

void* DevHandle

uint32_t ionum

uint32_t* freq

uint16_t* duty

uint32_t* pulsecnt

);

[in] DevHandle

[out] pulsecnt

[in] DevHandle

[out] adval

JTool

61 / 81

ErrorType ADCGetVal_m (

void* DevHandle

uint32_t iomask

uint16_t* advals

);

ErrorType JIOReboot (

void* DevHandle

);

If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ADCGetVal_m
Multiple pins to get ADC sample values (mask multi-channel execution)

Syntax

Parameters
device Handle

multiple pin bit numbers (bitwise enable)
return ADC sample values of multiple channels (pass in a 32-channel array

of uint16_t type to return ADC sample values of the corresponding channels)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOReboot
Restart the JIO device

Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone

[in] DevHandle

[in] iomask

[out] advals

[in] DevHandle

JTool

62 / 81

[in] val

ErrorType JIOSetVcc (

void* DevHandle

uint8_t val

);

ErrorType JIOSetVio (

void* DevHandle

uint8_t val

);

If the operation fails, return an error code reference ErrorType enumeration value

JIOSetVcc
Setting the JIOVCC output voltage

Syntax

Parameters
device Handle

VCC option enumeration value, different models may support different, specific
reference JIO interface drop-down box (for example: 0 - 5V; 1 - 3.3V; 2-off)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOSetVio
Set the JIOVIO level

Syntax

Parameters
device Handle

VIO option enumeration value. Different models may support different values.
For details, please refer to the JIO interface drop-down box (for example: 0 - 3.3V; 1 -
1.8V).

Return Value

[in] DevHandle

[in] DevHandle

[in] val

JTool

63 / 81

ErrorType JIOSetID (

void* DevHandle

uint16_t val

);

ErrorType JIOIntoBoot (

void* DevHandle

);

If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOSetID
Set the ID of the JIO device.

Syntax

Parameters
device Handle

ID value (0~65535)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JIOIntoBoot
Restart JIO and enter bootloader
Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] val

[in] DevHandle

JTool

64 / 81

[out] result

ErrorType I2CScan (

void* DevHandle

uint8_t* cnt

uint8_t* result

);

ErrorType I2CWrite (

void* DevHandle

uint8_t slave_addr,

REGADDR_TYPE reg_type,

uint32_t reg_addr,

uint16_t len

uint8_t* data

);

-------- JI2C interface--------

I2CScan
Scan the I2C slave address

Syntax

Parameters
device Handle

returns the number of scanned slave addresses
returns the scanned slave address (be sure to pass in 128 arrays of uint8_t

type, and the scanned address will be stored in this array)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I2CWrite
I2C write data

Syntax

Parameters

[in] DevHandle

[out] cnt

JTool

65 / 81

ErrorType I2CRead (

void* DevHandle

uint8_t slave_addr,

REGADDR_TYPE reg_type,

uint32_t reg_addr,

uint16_t len

uint8_t* buf

);

device Handle
slave address (8-bit mode)

register address type, refer to REGADDR_TYPE enumeration value
register Address

write Length
array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I2CRead
I2C read data

Syntax

Parameters
device Handle
slave address (8-bit mode)

register address type, refer to REGADDR_TYPE enumeration value
register Address

len)

read Length
read the array in which the data is stored (make sure the array is at least = =

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] slave_addr

[in] reg_type

[in] reg_addr

[in] len

[in] data

[in] DevHandle

[in] slave_addr

[in] reg_type

[in] reg_addr

[in] len

[out] buf

JTool

66 / 81

[in] raddr_delay

ErrorType I2CReadWithDelay (

void* DevHandle

uint8_t slave_addr,

REGADDR_TYPE reg_type,

uint32_t reg_addr,

uint16_t len

uint8_t* buf

uint8_t sr_delay,

uint8_t raddr_delay

);

I2CReadWithDelay
I2C read data (with delay)

Syntax

Parameters
device Handle
slave address (8-bit mode)

register address type, refer to REGADDR_TYPE enumeration value
register Address

len)

read Length
read the array in which the data is stored (make sure the array is at least = =

read plus delay wait (before Sr repeat start condition)
read plus delay wait (after sending the read address)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

EEWrite
EEPROM write data

Syntax

[in] DevHandle

[in] slave_addr

[in] reg_type

[in] reg_addr

[in] len

[out] buf

[in] sr_delay

JTool

67 / 81

[in] reg_type

[in] page_size

[in] reg_addr

Parameters
device Handle

base slave address (EEPROM with multiple blocks has multiple
slave addresses, please use the first one)(8-bit mode)

register address type, refer to REGADDR_TYPE enumeration value
(EEPROM can only be 8 bits or 16 bits, refer to the specific model)

page size of EEPROM (make sure this parameter is correct for cross-
page processing)

register Address
write Length
array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

EERead
EEPROM read data

Syntax

ErrorType EEWrite (

void* DevHandle

uint8_t base_slave_addr,

REGADDR_TYPE reg_type,

uint16_t page_size,

uint32_t reg_addr,

uint32_t len

uint8_t* data

);

[in] DevHandle

[in] base_slave_addr

[in] len

[in] data

JTool

68 / 81

[in] reg_type

[in] reg_addr

ErrorType I2CRegisterIntCallback (

void* DevHandle

INT_TYPE inttype

I2CIntCallbackFun callback)

Parameters
device Handle

base slave address (EEPROM with multiple blocks has multiple
slave addresses, please use the first one)(8-bit mode)

register address type, refer to REGADDR_TYPE enumeration value
(EEPROM can only be 8 bits or 16 bits, refer to the specific model)

register Address
read Length
read the array in which the data is stored (make sure the array is at least = =

len)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I2CRegisterIntCallback
Register interrupt callback function for I2C INT pin

Syntax

Parameters
device Handle

interrupt trigger type, refer to INT_TYPE enumeration value
interrupt callback function pointer, custom interrupt function (parameter

ErrorType EERead (

void* DevHandle

uint8_t base_slave_addr,

REGADDR_TYPE reg_type,

uint32_t reg_addr,

uint32_t len

uint8_t* buf

);

[in] DevHandle

[in] base_slave_addr

[in] len

[out] buf

[in] DevHandle

[in] inttype

[in] callback

JTool

69 / 81

ErrorType I2CCloseIntCallback(void* DevHandle)

ErrorType JI2CReboot (

void* DevHandle

);

and return value are void), bring the function name into this parameter, this function will be
executed when the interrupt is triggered

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

I2CCloseIntCallback
Interrupt callback function to close I2C INT pin

Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JI2CReboot
Restart the JI2C device

Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] DevHandle

JTool

70 / 81

[in] val

[in] val

ErrorType JI2CSetVcc (

void* DevHandle

uint8_t val

);

ErrorType JI2CSetVio (

void* DevHandle

uint8_t val

);

JI2CSetVcc
Setting the JI2CVCC output voltage

Syntax

Parameters
device Handle

VCC option enumeration value, different models may support different, specific
reference JI2C interface drop-down box (for example: 0 - 5V; 1 - "= VIO" ; 2-off)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JI2CSetVio
Set the JI2CVIO level

Syntax

Parameters
device Handle

VIO option enumeration value, different models may support different, specific
reference JI2C interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] DevHandle

JTool

71 / 81

[in] val

ErrorType JI2CSetSpeed (

void* DevHandle

uint8_t val

);

ErrorType JI2CSetID (

void* DevHandle

uint16_t val

);

JI2CSetSpeed
Set JI2C communication rate

Syntax

Parameters
device Handle

I2C rate option enumeration value, different models may support different,
specific reference JI2C interface drop-down box (for example: 0 - 10K; 1 - 50K)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JI2CSetID
Set the ID of the JI2C device.

Syntax

Parameters
device Handle

ID value (0~65535)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

[in] DevHandle

[in] DevHandle

[in] val

JTool

72 / 81

[in] firstbit

ErrorType JI2CIntoBoot (

void* DevHandle

);

ErrorType SPIWriteOnly (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

uint32_t len

uint8_t* dataw)

JI2CIntoBoot
Restart JI2C and enter bootloader
Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

-------- JSPI interface--------

SPIWriteOnly
SPI write-only data

Syntax

Parameters
device Handle

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

write Length
array of data written

Return Value
If the operation succeeds, returns ErrNone

[in] DevHandle

[in] DevHandle

[in] ck

[in] len

[in] dataw

JTool

73 / 81

[in] firstbit

ErrorType SPIReadOnly (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

uint32_t len

uint8_t* bufr)

ErrorType SPIWriteRead (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

uint32_t len

uint8_t* dataw

uint8_t* bufr)

If the operation fails, return an error code reference ErrorType enumeration value

SPIReadOnly
SPI read data only

Syntax

Parameters
device Handle

len)

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

read Length
read the array in which the data is stored (make sure the array is at least = =

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIWriteRead
SPI write and read data at the same time

Syntax

[in] DevHandle

[in] ck

[in] len

[out] bufr

JTool

74 / 81

[in] firstbit

[in] firstbit

ErrorType QSPIWriteOnly (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

uint32_t len

uint8_t* dataw)

Parameters
device Handle

len)

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

read and write length
array of data written
read the array in which the data is stored (make sure the array is at least = =

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

QSPIWriteOnly
QSPI write-only data

Syntax

Parameters
device Handle

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

write Length
array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

QSPIReadOnly
QSPI read data only

[in] DevHandle

[in] ck

[in] len

[in] dataw

[out] bufr

[in] DevHandle

[in] ck

[in] len

[in] dataw

JTool

75 / 81

[in] firstbit

ErrorType QSPIReadOnly (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

uint32_t len

uint8_t* bufr)

Syntax

Parameters
device Handle

len)

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

read Length
read the array in which the data is stored (make sure the array is at least = =

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIWriteWithCMD
SPI writes data with instructions (CMD, ADDR, ALT, DUMMY)

Syntax

[in] DevHandle

[in] ck

[in] len

[out] bufr

JTool

76 / 81

[in] firstbit

[in] qspitype

[in] addrtype

Parameters
device Handle

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

spi/qspi combination type, reference QSPI_TYPE enumeration value
cmd bytes, reference FIELDLEN_TYPE enumeration value

cmd
addr Bytes, reference FIELDLEN_TYPE enumeration value

addr
alt bytes, reference FIELDLEN_TYPE enumeration value

alt
number of dummy bytes, reference FIELDLEN_TYPE enumeration value

write Length
array of data written

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIReadWithCMD
SPI read data with instructions (CMD, ADDR, ALT, DUMMY)

Syntax

ErrorType SPIWriteWithCMD (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

QSPI_TYPE qspitype

FIELDLEN_TYPE cmdtype

uint32_t cmd

FIELDLEN_TYPE addrtype

uint32_t addr

FIELDLEN_TYPE alttype

uint32_t alt

FIELDLEN_TYPE dummytype

uint32_t len

uint8_t* dataw)

[in] DevHandle

[in] ck

[in] cmdtype

[in] cmd

[in] addr

[in] alttype

[in] alt

[in] dummytype

[in] len

[in] dataw

JTool

77 / 81

[in] firstbit

[in] qspitype

[in] addrtype

Parameters
device Handle

clock type, refer to SPICK_TYPE enumeration value
bit order (MSB,LSB), reference SPIFIRSTBIT_TYPE enumeration value

spi/qspi combination type, reference QSPI_TYPE enumeration value
cmd bytes, reference FIELDLEN_TYPE enumeration value

cmd
addr Bytes, reference FIELDLEN_TYPE enumeration value

addr
alt bytes, reference FIELDLEN_TYPE enumeration value

alt
number of dummy bytes, reference FIELDLEN_TYPE enumeration value

len)

read Length
read the array in which the data is stored (make sure the array is at least = =

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPIRegisterIntCallback
Register the interrupt callback function for the SPI INT pin

ErrorType SPIReadWithCMD (

void* DevHandle

SPICK_TYPE ck

SPIFIRSTBIT_TYPE firstbit

QSPI_TYPE qspitype

FIELDLEN_TYPE cmdtype

uint32_t cmd

FIELDLEN_TYPE addrtype

uint32_t addr

FIELDLEN_TYPE alttype

uint32_t alt

FIELDLEN_TYPE dummytype

uint32_t len

uint8_t* bufr)

[in] DevHandle

[in] ck

[in] cmdtype

[in] cmd

[in] addr

[in] alttype

[in] alt

[in] dummytype

[in] len

[out] bufr

JTool

78 / 81

ErrorType SPIRegisterIntCallback (

void* DevHandle

INT_TYPE inttype

SPIIntCallbackFun callback)

ErrorType SPICloseIntCallback(void* DevHandle)

Syntax

Parameters
device Handle

interrupt trigger type, refer to INT_TYPE enumeration value
interrupt callback function pointer, custom interrupt function (parameter

and return value are void), bring the function name into this parameter, this function will be
executed when the interrupt is triggered

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

SPICloseIntCallback
Interrupt callback function to close SPI INT pin

Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPIReboot
Restart the JSPI device

Syntax

[in] DevHandle

[in] inttype

[in] callback

[in] DevHandle

JTool

79 / 81

[in] val

ErrorType JSPISetVcc (

void* DevHandle

uint8_t val

);

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetVcc
Setting the JSPIVCC output voltage

Syntax

Parameters
device Handle

VCC option enumeration value, different models may support different, specific
reference JSPI interface drop-down box (for example: 0 - 5V; 1 - "= VIO" ; 2-off)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetVio
Setting the JSPIVIO level

Syntax

ErrorType JSPIReboot (

void* DevHandle

);

[in] DevHandle

[in] DevHandle

JTool

80 / 81

[in] val

[in] val

ErrorType JSPISetSpeed (

void* DevHandle

uint8_t val

);

Parameters
device Handle

VIO option enumeration value, different models may support different, specific
reference JSPI interface drop-down box (for example: 0 - 3.3V; 1 - 1.8V)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetSpeed
Set the JSPI communication rate

Syntax

Parameters
device Handle

I2C rate option enumeration value, different models may support different,
specific reference JSPI interface drop-down box (for example: 0 - 468.75K; 1 - 937.5K)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPISetID
Set the JSPI device ID.

Syntax

ErrorType JSPISetVio (

void* DevHandle

uint8_t val

);

[in] DevHandle

[in] DevHandle

JTool

81 / 81

ErrorType JSPIIntoBoot (

void* DevHandle

);

Parameters
device Handle

ID value (0~65535)

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

JSPIIntoBoot
Restart JSPI and enter bootloader
Syntax

Parameters
device Handle

Return Value
If the operation succeeds, returns ErrNone
If the operation fails, return an error code reference ErrorType enumeration value

ErrorType JSPISetID (

void* DevHandle

uint16_t val

);

[in] DevHandle

[in] val

[in] DevHandle

	Introduction
	Simple example
	CMD application example in Powershell
	Application example of DLL in C# Program

	CMD command set
	help
	scan
	delay
	--------JIO --------
	iol
	iow
	ior
	pulseon
	pulseoff
	pulsecnt
	pwmon
	pwmoff
	pwmfreq
	capclear
	capon
	capget
	adcsamp
	adcon
	adcget
	jiovcc
	jiovio
	jioid
	jioreboot
	jioinboot
	-------- JI2C--------
	i2cwrite
	eewrite
	eeread
	eewritef
	eereadf
	i2cint
	ji2cvcc
	ji2cvio
	ji2cspd
	ji2cid
	ji2creboot
	ji2cinboot
	--------JSPI --------
	spiread
	spiwr
	qspiwrite
	qspiread
	spiwcmd
	spircmd
	spiint
	jspivcc
	jspivio
	jspispd
	jspiid
	jspireboot
	jspiinboot

	DLL API
	Enumeration type
	Interface Overview
	Public API interface
	JTool-IO API interface

	-------- Public Interface--------
	Syntax
	Return Value

	DevOpen
	Syntax
	Return Value

	DevClose
	Syntax
	Return Value

	-------- JIO interface--------
	Syntax
	Return Value

	IOSetNone_m
	Syntax
	Return Value

	IOSetIn
	Syntax
	Return Value

	IOSetIn_m
	Syntax
	Return Value

	IOSetOut
	Syntax
	Return Value

	IOSetOut_m
	Syntax
	Return Value

	IOSetVal
	Syntax
	Return Value

	IOSetVal_m
	Syntax
	Return Value

	IOSetOutWithVal
	Syntax
	Return Value

	IOSetOutWithVal_m
	Syntax
	Return Value

	IOPulseOn
	Syntax
	Return Value

	IOPulseOn_m
	Syntax
	Return Value

	IOPulseOff
	Syntax
	Return Value

	IOPulseOff_m
	Syntax
	Return Value

	IOPulseCnt
	Syntax
	Return Value

	IOPulseCnt_m
	Syntax
	Return Value

	IOPulseFreq
	Syntax
	Return Value

	IOPulseFreq_m
	Syntax
	Return Value

	PWMSetFreq
	Syntax
	Return Value

	PWMSetOut
	Syntax
	Return Value

	PWMSetOut_m
	Syntax
	Return Value

	PWMSetOn
	Syntax
	Return Value

	PWMSetOn_m
	Syntax
	Return Value

	PWMSetOff
	Syntax
	Return Value

	PWMSetOff_m
	Syntax
	Return Value

	PWMSetDuty
	Syntax
	Return Value

	PWMSetDuty_m
	Syntax
	Return Value

	CapSetIn
	Syntax
	Return Value

	CapClearCnt
	Syntax
	Return Value

	ADCSetIn
	Syntax
	Return Value

	ADCSetIn_m
	Syntax
	Return Value

	ADCSetSamp
	Syntax
	Return Value

	IOGetInVal
	Syntax
	Return Value

	IOGetInVal_m
	Syntax
	Return Value

	IOGetPulseRemain
	Syntax
	Return Value

	IOGetPulseRemain_m
	Syntax
	Return Value

	CapGetVal
	Syntax
	Return Value

	ADCGetVal
	Syntax
	Return Value

	ADCGetVal_m
	Syntax
	Return Value

	JIOReboot
	Syntax
	Return Value

	JIOSetVcc
	Syntax
	Return Value

	JIOSetVio
	Syntax
	Return Value

	JIOSetID
	Syntax
	Return Value

	JIOIntoBoot
	Syntax
	Return Value

	-------- JI2C interface--------
	Syntax
	Return Value

	I2CWrite
	Syntax
	Return Value

	I2CRead
	Syntax
	Return Value

	I2CReadWithDelay
	Syntax
	Return Value

	EEWrite
	Syntax
	Return Value

	EERead
	Syntax
	Return Value

	I2CRegisterIntCallback
	Syntax
	Return Value

	I2CCloseIntCallback
	Syntax
	Return Value

	JI2CReboot
	Syntax
	Return Value

	JI2CSetVcc
	Syntax
	Return Value

	JI2CSetVio
	Syntax
	Return Value

	JI2CSetSpeed
	Syntax
	Return Value

	JI2CSetID
	Syntax
	Return Value

	JI2CIntoBoot
	Syntax
	Return Value

	-------- JSPI interface--------
	Syntax
	Return Value

	SPIReadOnly
	Syntax
	Return Value

	SPIWriteRead
	Syntax
	Return Value

	QSPIWriteOnly
	Syntax
	Return Value

	QSPIReadOnly
	Syntax
	Return Value

	SPIWriteWithCMD
	Syntax
	Return Value

	SPIReadWithCMD
	Syntax
	Return Value

	SPIRegisterIntCallback
	Syntax
	Return Value

	SPICloseIntCallback
	Syntax
	Return Value

	JSPIReboot
	Syntax
	Return Value

	JSPISetVcc
	Syntax
	Return Value

	JSPISetVio
	Syntax
	Return Value

	JSPISetSpeed
	Syntax
	Return Value

	JSPISetID
	Syntax
	Return Value

	JSPIIntoBoot
	Syntax
	Return Value

